

PROGRAMMING IN
PYTHON

S.RAFEEQ
AHAMED.M.Sc.&
M.RIYAZ MOHAMMED

M.C.A.,M.Phil . ,

1

PROGRAMMING IN PYTHON

CONTENTS
Introduction to Computer Languages .. 8

Computer Architecture ... 8

Programming Fundamentals ... 8

Compiler and Interpreters ... 8

Compilation of a program.. 9

Lexical Analysis .. 9

Syntactic Analysis .. 9

Object code generation ... 9

Make / Link ... 9

Generations of Programming Languages ... 11

Languages for Text Mode Operating Systems .. 11

Languages with DBMS concept.. 11

Languages with GUI... 12

RDBMS .. 12

Introduction to Python .. 12

Features of Python .. 12

Python Compiler Installation ... 12

Core Python Language .. 13

Getting Started ... 13

Python Comment Lines ... 13

Creating a Comment ... 13

Multi Line Comments .. 14

Python Variables ... 14

Variable Names ... 14

Naming Variable with multiple words .. 15

Camel Case .. 15

Pascal Case .. 15

Snake Case .. 15

Python Data Types .. 16

Built-in Data Types .. 16

Python Operators ... 16

Bitwise Operators ... 16

Number System... 16

Binary Number System .. 16

Binary Truth Tables for AND,OR and XOR operations ... 17

Octal Number System.. 17

2

PROGRAMMING IN PYTHON

Hexadecimal Number System .. 18

Python Comment Lines ... 18

Creating a Comment ... 18

Multi Line Comments .. 19

Commands.. 19

Input Commands ... 19

Type Casting .. 20

Output Commands .. 21

Outputting Variables ... 21

Assignment Expressions .. 22

Program to test Python Operators ... 22

Arithmetic Expressions .. 24

Hierarchy of operation .. 24

Program to simplify a complex arithmetic expression .. 25

Control Statements ... 25

Unconditional Control Commands ... 25

Break ... 26

Conditional Control Commands ... 26

If-elif-else: ... 26

Program to find biggest among three numbers .. 27

Repetitive Control Commands ... 28

For loop... 28

Sample program using for in loop .. 29

Program to print Prime numbers within a given N range ... 29

While loop... 30

Python (Data) Collections .. 32

More Data types ... 32

Setting the Data Type .. 32

Setting the Specific Data Type ... 32

Arrays ... 33

Access the Elements of an Array .. 33

Modifying an array element .. 33

Length of an Array ... 33

Looping Array Elements ... 33

Adding Array Elements .. 33

Removing Array Elements.. 33

Sample program using for loop and Array .. 34

Lists .. 34

Create a List .. 34

3

PROGRAMMING IN PYTHON

List Items... 34

Ordered List .. 34

Changeable List ... 35

Duplicates ... 35

len() .. 35

type() .. 35

list() Constructor ... 35

Program to test list .. 36

List Methods ... 38

Tuples ... 39

Tuple Items ... 39

Ordered .. 39

Unchangeable ... 39

Allow Duplicates.. 39

Tuple Length ... 39

Create Tuple With a single Item ... 39

Tuple Items - Data Types ... 39

type() .. 40

Array Methods .. 40

The tuple() Constructor ... 40

Access Tuple Items .. 40

Update Tuples ... 40

Change Tuple Values ... 40

Add Items .. 40

Remove Items ... 41

Unpack Tuples ... 41

Using Asterisk(*) ... 42

Loop Tuples ... 42

Loop Through the Index Numbers ... 42

Using a While Loop .. 42

Join Tuples .. 43

Multiply Tuples ... 43

Tuple Methods .. 43

Sample program with Tuples exercises .. 43

Dictionaries ... 45

Ordered / Unordered .. 45

Changeable ... 45

Duplicates Not Allowed ... 46

Dictionary Length .. 46

4

PROGRAMMING IN PYTHON

Items Data Types ... 46

type() .. 46

Accessing Items ... 46

Get Keys .. 47

Get Values ... 47

Get Items .. 48

Check if Key Exists ... 48

Change Values ... 49

Update Dictionary ... 49

Adding Items ... 49

Removing Items .. 49

Loop through a Dictionary ... 50

Copy a Dictionary .. 51

Nested Dictionaries ... 51

Dictionary Methods ... 52

Sample Program using Dictionary Methods ... 52

Sets ... 54

Create a Set ... 54

Set Items ... 54

Unordered .. 54

Unchangeable ... 54

Duplicates Not Allowed ... 54

Length of a Set .. 55

Data Types of Set Items ... 55

type() .. 55

set() Constructor ... 55

Access Items ... 55

Change Items .. 56

Add Items .. 56

Add Any Iterable ... 56

Remove Item ... 56

Loop Items .. 57

Join Two Sets... 57

Keeping Only the Duplicate Items .. 58

Keep All, except the Duplicates ... 58

Set Methods .. 59

Python Strings ... 59

Strings ... 59

Assign String to a Variable ... 59

5

PROGRAMMING IN PYTHON

Multiline Strings .. 59

Strings are Arrays .. 60

Looping Through a String... 60

String Length ... 60

Check String .. 60

Check if NOT ... 61

Slicing.. 61

Slice From the Start ... 61

Slice To the End ... 61

Negative Indexing.. 62

Modify Strings ... 62

Upper Case .. 62

Lower Case .. 62

Remove Whitespace .. 62

Replace String ... 62

Split String ... 62

String Methods.. 63

String Concatenation ... 63

Format - Strings ... 63

String Format .. 63

Python String Formatting .. 64

String format() ... 64

Multiple Values ... 64

Index Numbers .. 64

Named Indexes.. 65

Escape Character ... 65

String Methods.. 65

Functions .. 67

Program to find ncr=n! r! / (n-r)! ... 67

Lambda Function ... 68

Purpose of Lambda Functions.. 69

Global Variables .. 69

The global Keyword ... 70

Introduction to Object Oriented Programming: ... 71

Classes .. 71

Objects ... 71

Attributes.. 71

Methods ... 71

Create a Class .. 71

6

PROGRAMMING IN PYTHON

__init__() Function .. 72

Inheritance .. 73

The self Parameter .. 74

Modify Object Properties .. 74

Delete Object Properties ... 75

The pass Statement ... 75

Polymorphism ... 75

Python Iterators .. 76

Iterator vs Iterable .. 76

Looping Through an Iterator .. 76

Create an Iterator .. 77

Python Scope .. 78

Local Scope ... 78

Function Inside Function ... 78

Global Scope ... 78

Naming Variables .. 79

Global Keyword ... 79

Python Modules .. 79

Create a Module .. 79

Use a Module .. 79

Variables in Module... 80

Naming a Module .. 80

Re-naming a Module ... 80

Built-in Modules .. 80

Using the dir() Function ... 80

Import From Module ... 81

Python Datetime ... 81

Python Dates ... 81

Date Output .. 81

Creating Date Objects .. 82

The strftime() Method ... 82

Handling files .. 83

Creating a file .. 83

Opening a file .. 83

Writing contents to the file ... 83

Appending contents to the file .. 84

Reading contents from file .. 84

Rewriting contents to the file .. 85

Sample Program for Rewriting Contents (r+ mode).. 85

7

PROGRAMMING IN PYTHON

Closing a file .. 85

Sample program for opening file in all modes .. 88

Reading Contents Of CSV (Comma Seperated) Excel File Contents:.. 89

Reading EXCEL File .. 90

Python with databases. ... 90

Python Database Connectivity .. 90

Python with MySQL ... 90

Create MySql database Connection ... 90

Test MySQL Connectio .. 91

Check if a Database Exists .. 91

Create a Table ... 92

Check if Table Exists .. 92

Insert a row in a table.. 93

Insert Multiple Rows ... 93

Get Inserted ID .. 94

Select From a Table ... 94

Selecting Columns ... 94

fetchone() Method .. 95

Select With a Filter .. 95

Wildcard Characters .. 96

Prevent SQL Injection .. 96

Delete row .. 97

CRUD Program .. 97

Creating a new data row ... 97

Updating existing data row .. 98

Deleting an existing row .. 98

Reading a data row ... 98

8

PROGRAMMING IN PYTHON

Introduction to Computer Languages
Computer Architecture
A computer can be divided into 3 main units as follows:

1. INPUT UNIT – Used to input data for processing. The input can be given to the computer using any one of the input

devices such as Keyboard, Mouse, Scanner, Microphone, Tablets etc.

2. CENTRAL PROCESSING UNIT (CPU) – All the processes are done within this unit. The CPU consists of following sub-

units inside to perform various tasks those are processed electronically inside the computer. The 3 sub-units of
the CPU are described below:

a. Main Memory Unit (MMU) – All the unprocessed, processed data (All questions and answers) and
commands are stored in this Memory unit only.

b. Arithmetic & Logic Unit (ALU) – This is the main processing area.
c. Control Unit (CU) – This will control the operations of all units of a computer.

3. OUTPUT UNIT – All the information to be given to the user will be done through this unit. The output can be
obtained from any of the devices such as Monitor screen, loudspeaker, printer, plotter etc.

Programming Fundamentals
A Program is defined as a collection of instructions those are commonly called as commands or statements.
All the instructions inside a program are processed by the computer line by line in a top-down order.Usualy a program
may contain only collection of command and / or may have combination of commands and data those are unprocessed
or partially processed.

Compiler and Interpreters
Commands of the program are in form of easily understandable by a programmer. They are made up of englshi phrases
(Example: Input, Print, continue, break etc.) The program written by a programmer is called as High level language.
This is not understood by the computer. Computer can understand only machine language that may contain binary
numbers, hexadecimal numbers etc. To make a computer to understand the high level language commands of a
program, a translating mechanism that can translate high level language to low level language and vice versa. This

9

PROGRAMMING IN PYTHON

translating mechanism is a software called as compiler or interpreter. The differences between compiler and
interpreter are:

 Compiler will read the entire program and translate it to machine language (or low level language) while
interpreter compiles line by line of a program.

 Interpreters are always come with its own program editor. For compiler, we can use any editor to write the
high level language and can translate it.

Compilation of a program
A program written in high level language is known as source code. A compiler reads the source code and does spelling
check. Each phrase in a line of a source code is technically called as Lexusand analyzing it is known as Lexical Analysis.
It is like checking a sentence of any languages like English, French, Tamil etc., for spelling check.

After ensuring that in a line there is no spelling mistake, the compiler goes for another analysis called Syntactic
Analysis. This is to check that the entire line (or sentence) is grammatically correct or not.

If any of the above analysis is failed, the computer will ignore the process of translating the source code to machine
code and throws an error message called Syntax Error.

If both analysis are successfully passed, then the compiler will generate first level machine language code. This code
is called object code. This can be executed by the compiler and it gives the result for which the source code is written.
However, object codes are executable only by the compiler. So, we need the compiler to run your program that is
translated to object code. In other words, object program is still compiler dependent and we need the compiler to run
the program. To make the object program as compiler independent, that is to make the object program to be executed
directly by the operating system, it has to undergo another process called linking. Linking is a process that links
necessary libraries of a compiler to make it as a standalone executable file. This process is also called making
executable program. After this process, there will be another file created named .EXE file. This file can be directly
executed in a computer without a compiler.

The below are the processes carried out by a compiler:

Lexical Analysis - Reads and Checks the source code (Sample.CPP, Sample.COB etc.,) for spelling check. On
successful completion of lexical analysis, proceed to next step. Throw syntax error and abort compilation if failed.

Syntactic Analysis – Reads and checks the source program for grammar. If passed, proceed to object code
generation. Throw syntax error and abort compilation if failed.

Object code generation – If both the above analysis are passed, the compiler will create object code equivalent to
the source code and the code will be saved in a file named (Sample.OBJ). This file can be executed with the help
of the compiler. The program written can be executed with the compiler.

Make / Link – This process links some of the compiler’s libraries with the object code to make the program as a
standalone program that can be executed without the help of the compiler. Link process will create a file named
Sample.EXE. It can be executed on any computer using same operating system even if the compiler is not available.

10

PROGRAMMING IN PYTHON

The below flowchart explains the process of a compiler and various formation of the source program:

Source Program
(Sample.CPP)

Lexical Analysis

Is
Passed?

Syntactic Analysis

Is
Passed?

Object Code
Generation

(Sample.OBJ)

Object Code
Generation

(Sample.OBJ)

Linking / Make
(Sample.EXE)

Throw Syntax Error
(Compilation Fails)

11

PROGRAMMING IN PYTHON

The instructions or commands of a program can be logically categorized as follows:

1. Input Commands – Used to input data to the computer.
2. Output Commands – Used to get the information from the computer.
3. Control Commands – These commands are to control the flow (order) of the commands execution. The control

commands can be classified as below:
a. Unconditional Control Commands – To change the default order of line by line execution of the

commands.
b. Conditional Control Commands – To change the order of execution of the commands based on a

condition.
c. Repetitive Control Commands – To repeatedly execute a set of commands.

4. Sub-programs and functions – To avoid redundant set of commands written in a program, the redundant steps
are separately written as a small program or a function and can be called as many times as needed in a program
wherever it is required. The main difference between sub-program and function is that a sub-program will not
return any values to the main program after the execution but a function will return a value to the main
program.

Generations of Programming Languages
Languages for Text Mode Operating Systems
Earlier stage high level languages are used in operating systems like DOS, UNIX, CPMs those were used in the
computers without graphics interface. They use monitors of text mode only. Few of the languages are BASIC,
FORTRAN, COBOL, PASCAL, C etc. If you know how to write statements, including variable declarations and loops, in
one of these three languages, then you have a head start in learning the others. However, many other details differ
among the languages. In particular, the data types and libraries available are considerably different.

Languages with DBMS concept
As a development in data handling a new concept named Database Management system was introduced in few
languages like dBASE, Clipper etc., to handle large volume of data in a better way.

12

PROGRAMMING IN PYTHON

Languages with GUI
Further, the operating systems like DOS were enhanced to handle Graphics also with a Graphics User Interface (GUI)
program called Windows. Hence, few of the languages also included features to handle GUI. Visual Basic, Visual C++,
Visual dBASE etc., are examples for such languages. They included Modules, Properties, Objects, Methods to write
visual programs.

RDBMS
As a next stage of development in the DBMS concept, RDBMS (Relational Database Management System) was
introduced and Microsoft introduced an RDBMS with GUI called Ms Access. Using MsAccess, we can write GUI
Programs with RDBMS concepts. RDBMS itself uses a language to manipulate data. This language is called Structured
Query Language (SQL). Databases with RDBMS concept like Ms SQL Server, Sybase, Oracle, MySQL etc. uses SQLs to
manipulate data. They provide driver software with that, programming languages can connect to the database and
access the databases for input and output operations. The concept of connecting a languages to work with databases
by providing drivers are called ODBC (Open Database Connectivity), JDBC and Python Database Connectivity.

Introduction to Python
Python is very powerful and easy to learn language.

Features of Python
 It has a useful combination of features those, have made it very popular in recent years.

 It is a platform independent language that runs a onetime developed code on any OS.

 It can be used to develop Web applications.

 It can be used for files handling.

 It can connect to any database and can perform CRUD (Create, Read, Update and Delete) operations on any
database.

 It can be used to handle big data and complex mathematics.

 It has simple syntax avoiding complicated rules and data declarations.

 Python is compatible for procedural programming, Object oriented programming (OOPS) or functional
programming.

 Python code can be executed as soon as it is written as it runs on an interpreter facilitating prototyping is easy.

Python Compiler Installation
Many PCs and Macs will have python already installed. To check if you have python installed on a Windows PC,
search in the start bar for Python or run the following on the Command Line (cmd.exe):

C:\Users\Your Name>python --version

To check if you have python installed on a Linux or Mac, then on linux open the command line or on Mac open the
Terminal and type:

python --version

Python compiler can be downloaded for free from the following website: https://www.python.org/

https://www.python.org/

13

PROGRAMMING IN PYTHON

Core Python Language
Getting Started
Python is an interpreter programming language.It provides its own program editor to type in the code and has built
in option to run the code. Also,a developer can write Python (.py) files in a text editor and then put those files into
the python interpreter to be executed.The way to run a python file is like this on the command line:

C:\Users\Your Name>python MyPython1.py

Where "MyPython1.py" is the name of the python file.

As mentioned earlier, Python program can also be written using any text editor. It is also possible to write Python
program in an Integrated Development Environment (IDLE) of Python or using any IDE such as Thonny, Pycharm,
Netbeans or Eclipse.

The program MyPython1.py, the below code is typed:

print("My first python program")

Now, type the below command in command prompt:

C:\>python Mypython1.py

The output is:

My first python program

Python syntax can be executed by writing directly in the Python Shell Command Line:

>>>print("My first python program ")
My first python program

Python Comment Lines
Comment lines are line that can be used to explain that for what purpose the program is written. Comment lines are
not executed by the program. Comments can be used to make the code more readable. It can be used to prevent
execution of some portion of codes as an act of testing code.

Example
#print("Hello, World!")

print("Hi, C3PO!")

Creating a Comment
Comment line starts with a # character. When Python reads this line it will ignore the line unexecuted.

Example
#This is a comment

print("I am a python code!")

Comments can be placed at the end of an executable code line as below:

Example
print("I am a python code!") #This is a comment

14

PROGRAMMING IN PYTHON

Multi Line Comments
Python has no special syntax for multiline comments. To add a multiline comment, # can be inserted at the
beginning of each line

#This is a comment

#written in

#more than just one line

print("Hello, World!")

or a multiline string can be used. Python will ignore string literals that are not assigned to a variable. So, a multiline
string (triple quotes) can be used as multiple line comment as below:

"""

This is a comment line

written in

more than just one line

"""

print("Hello, World!")

Python Variables
A variable is a container to hold a data.

Example:
A=5
B=”Kaveriyin Pudhalvan”

In the above examples A is the variable to store an integer number while B stores a stream of characters (String) of
non-numeric data. Unlike other languages like C++, java etc., Python has no declaration formalities for a variable.

A variable is created immediately when a value is assigned to it and the type of variable is understood by Python from
the value stored to the variable. In other words, variables do not need type declaration and can even change type after
they have been set.

Example
 x = 5

 b = "Raja RajaChozhan"

 print(x)

 print(b)

 x = "Sally"

 print(x)

The output will be:

 5

 Raja RajaChozhan

 Sally

Variable Names
The rules to follow when naming a variable:

 A variable name must start with a letter or the underscore character

 A variable name cannot start with a number

15

PROGRAMMING IN PYTHON

 A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, and _)

 Variable names are case-sensitive (age, Age and AGE are three different variables) A variable can be a single
letter name or can be in a descriptive way with more letters.

Example
Valid variable names:

myname = "Quigan Jinn"

my_name = "Leia"

my_name = "Anakin"

myName= "Lando"

MYNAME = "Carlission"

myname2 = "John Williams"

Example
Invalid variable names:

2myname = “Palpatein "

my-name= “Darth Sidius "

my name= "The evil emperor"

Note that variable names are case-sensitive.

Naming Variable with multiple words
Variables can be named with multiple words. There are 3methods followed when naming a varable such as Camel
Case, Pascal Case and Snake Case.

Camel Case
When naming using multiple words, use the capital letter for the first letter of each word except the very first letter
of the variable name is Camel Case method.:

myFullName = "Ian Flemming"

Pascal Case
Naming Each word with a capital letter as the first letter for all the words is Pascal method

MyFullName = "Monty Norman"

Snake Case
Naming each word separated by an underscore is Snake method

my_full_name = "Desmond Lewylline"

Python allows to assign multiple values to multiple variables in one line:
Example

f1, f2, f3 = "Tie Fighter", "Imperial Walker", "Death Star"
print(f1)
print(f2)
print(f3)

Note: Make sure the number of variables matches the number of values, or else you will get an error.

Python allows to assign a single value to multiple variables in one line:
Example

a = b = c = "Alderon"
print(a)
print(b)
print(c)

16

PROGRAMMING IN PYTHON

Python Data Types
Python data types are listed in the below table:

PYTHON DATA TYPES

Data Type Bytes used Description

byte 1 -128 to 127

str
int 4 -231 to 231-1

long 8 -263 to 263-1

float 4 Up to 7 decimal digits

double 8 Up to 15 decimal digits

bool 1 True or False

complex

tuple

bytearray

range

set

frozenset

dict

list

Built-in Data Types
In programming, data type is an important concept. Variables can store data of different type of data. Python has the
following data types as built-in by default, in the below mentioned categories:

Data Type Keyword

Text Str

Numeric int, float, complex

Sequence list, tuple, range

Mapping Dict

Set set, frozenset

Boolean Bool

Binary bytes, bytearray, memoryview

3None NoneType

Python Operators
Bitwise Operators
Number System
The number system we use in daily life is called decimal number system, In decimal number system we use 10
numerical figures (0,1,2,3,4,5,6,7.8.9) to count numbers as follows: 0,1,2,3,4,5,6,7,8,9, to count next digit, we reset
the Least significant digit to zero and we increase the value of most significant (second higher digit) by 1 and thus we
get the next value to 9 as 10 and we keep counting further as 11,12,13,14,15,16,17,18,19,20…99,100,…199,200 and
so on.
To understand the Bitwise Operator and the usage of Octal and Hexadecimal numbers, it is important to know how to
convert a given decimal numbers to binary numbers, to Octal numbers, to Hexadecimal Numbers and Vice-Versa.

Binary Number System
We also have other number systems called Binary Number System that has only 2 numerical figures (0 and 1) to count
numbers, , In binary number system we count numbers as follows: 0,1, to count next digit, we reset the Least
significant digit to zero and we increase the value of most significant (second higher digit) by 1 and thus we get the

17

PROGRAMMING IN PYTHON

next value to 1 as 10 and we keep counting further as 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101,
1110, 1111 and so on. The binary data measurement unit is given in the below table:

BINARY TABLE

1 Bit Either 0 or 1

1 Byte 8 Bits

1024 Bytes 1 Kilo Byte (KB)

1024 KBs 1 Mega Byte (MB)

1024 MBs 1 Giga Byte (GB)

1024 GBs 1 Tera Byte (TB)

Converting a decimal number to a binary number
Let us take an example of a decimal number 4 and let us convert it to binary number. Keep dividing the given number
4 by 2 and note down the reminder. Repeat this procedure until the given number cannot be divided by 2 further and
note down the reminder, Assemble the reminders from bottom to top direction as shown below:

 = 1 0 0.

So, 100 is the binary equivalent for the decimal number 4. The answer is usually written as (4)10= (100)2. It can be
shown in 8 bit number, it can be written as 00000100. (Note: Adding leading zeros to a whole number will not
change its value)

Now, let us see how the binary number can be converted to its decimal equivalent,
Let us take a binary number (1101)2for conversion.

Multiply each BIT (BInarydigiT) by 2 power the digit position number and add all together to get the decimal
equivalent to the binary number.

The Bitwise operation can be performed by referring the below truth tables of Binary Operations:

Binary Truth Tables for AND,OR and XOR operations

AND OR XOR NOT

A B X A B X A B X B X

0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 1 1 0 1 1 1 0

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

Octal Number System
There is another number systems called Octal Number System that has only 8 numerical figures (0, 1, 2, 3, 4, 5, 6 and
7) to count numbers. In Octal number system we use count numbers as follows: 0,1,2,3,4,5,6,7, to count next digit,
we reset the Least significant digit to zero and we increase the value of most significant (second higher digit) by 1 and

2 4

2 2 –0

 1 – 0

If two binary numbers are given, each
digits of both numbers will be considered
as A and B and the result will be X

18

PROGRAMMING IN PYTHON

thus we get the next value to 1 as 10 and we keep counting further as 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25,
26, 27, 30, 31, 32, 33, 34, 35. 36. 47, 40,…77,1 00, and so on.

Hexadecimal Number System
There is another number systems called Octal Number System that has only 16 numerical figures
(0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,and F) to count numbers. In Hexadecimal number system we use count numbers as
follows: 0,1,2,3,…8,9,A,B,C,D,E,F, to count next digit, we reset the Least significant digit to zero and we increase the
value of most significant (second higher digit) by 1 and thus we get the next value to 1 as 10 and we keep counting
further as 11,12,13,1A,1B,1C,1D,1E,1F,20,21,22,…FF,100, and so on.

PYTHON OPERATORS

ARITHMETIC OPERATORS RELATIONAL OPERATORS

Purpose Real life Python Purpose Real life Python

Assignment = = Equal = ==

Addition + + Less than < <

Subtraction - - Lesser Or Equal ≤ <=

Multiplication x * Greater Than > >

Division ÷ / Greater Or Equal ≥ >=

Floor Division // Not Equal To <> !=

Power 23 **

Modular mod %

LOGICAL OPERATORS BITWISE OPERATORS

Purpose Real life Python Purpose Real life Python

And & and AND & &

Or or OR |

Not <> ! Exclusive OR ^

CONDITIONAL OPERATORS Bitwise
Compliment ~

Purpose Real life Python Left Shift <<

Evaluation based on a
condition Right Shift >>

Python Comment Lines
Comment lines are line that can be used to explain that for what purpose the program is written. Comment lines are
not executed by the program. Comments can be used to make the code more readable. It can be used to prevent
execution of some portion of codes as an act of testing code.

Example

#print("Hello, World!")

print("Cheers, Mate!")

Creating a Comment
Comment line starts with a # character. When Python reads this line it will ignore the line unexecuted.

Example

#This is a comment

print("I am a python code!")

19

PROGRAMMING IN PYTHON

Comments can be placed at the end of an executable code line as below:

Example
print("I am a python code!") #This is a comment

Multi Line Comments
Python has no specialsyntax for multi-line comments. To add a multiline comment, # can be inserted at the
beginning of each line

#This is a comment

#written in

#more than just one line

print("Hello, World!")

Or a multiline string can be used.Python will ignore string literals that are not assigned to a variable. So, a multiline
string (triple quotes) can be used as multiple line comment as below:

"""

This is a comment line

written in

more than just one line

"""

print("Hello, World!")

Commands
Input Commands
Input commands are used to get data from the user from console during runtime. Python provides an input command
to get data from the user.

Input()
General format of the input() command usage:
 Variable Name = input(<Prompt message>)

The input() command reads a value from the user and stores in a variable name. The data keyed in by the user will
always be stored as string type data.

Example-1:
a=input() will store the user input data in the variable a as string data. If a number is typed in and to involve that
number in a mathematical calculation, it has to be converted to corresponding numeric type of data before involving
it in mathematical calculation. So, a number can be inputted as shown below:
 a=int(input()) or a=input()
 a=int(a)
Example-2:
Python allows to provide a prompting message in the input() command as follows:

a=input(“Enter a number for the variable a:”) or

a=int(input(“Enter a number for the variable a:”))

20

PROGRAMMING IN PYTHON

Sample Program:

Sample program with input() command.

a=int(input("Enter A:"))

b=int(input("Enter B:"))

print("A%B is :",a%b)

Output:

Type Casting
If the data type of a variable needs to be specified, it can be done as below:

Example
x = str(5) # x will be '5'

y = int(5) # y will be 5

z = float(5) # z will be 5.0

Changing a data type to another is also called type casting. This is shown as below:

A=5

print(A)

print(str(A))

The output will be:

5
5

Also, the data type of a variable can be printed with the type() function as below:
x = 5

d = "Millennium Falcon"

print(type(x))

print(type(d))

String variables can be defined either by using single or double quotes:

n = "Darth Vader"

n = 'Darth Vader'

Both the definition will give same result of execution and no change in between them in the result.Note: Variable
names are case-sensitive.

21

PROGRAMMING IN PYTHON

Example
This creates two variables:

a = 4

A = "Sally"

#A will not overwrite as it is considered as different variable.

Output Commands
Print()
Python allows to use print() as output statement. The General format of print() command is:

print(“<Constant to print>”)
print(<variable to print)
print(“<Constant>”,<variable>)

For example, refer programs 1 & 2.

Outputting Variables
 Python print() function is often used to output variables.
Example
s = "Man Machine Relationship"
print(x)

print() function outputs multiple variables separated by a comma:
Example

a = "Man"

b = "Machine"

c = "Relationship"

print(a, b, c)

Also can be printed multiple variables using the + operator.
Example

a = "Man "

b = "Machine "

c = "Relationship"

print(a + b + c)

Notice the space after each values. The result will be "ManMachineRelationship" without the spaces.

For numbers, the + character works as a mathematical / arithmetic operator:

Example

x = 5

y = 10

print(x + y)

Using print() function, if tried to combine a string and a number with the + operator, Python gives an error:
Example

22

PROGRAMMING IN PYTHON

a = 5

b = "Muhammadh"

print(a + b)

The best way to output multiple variables using the print() function by separating each variables with commas.
This method supports different data types:

Example

a = 5

b = "Muhammadh"

print(a, b)

or using type casting, we can print them as below:

a = 5

b = "Muhammadh"

print(str(a) + b)

Note that the type casting is used to maintain all the variables type to be similar.

Assignment Expressions
To assign a numeric value, expression or string value to a variable, “=” symbol is used as sn assignment operator.

Example:
A=2+3
A=45
N=”Darth Vader”

Program to test Python Operators

#This is sample program to test Python Operators

a=10

b=15

c=4

d = a + b # Arithmetic

Operator - Addition

print("This is a + c = ",d)

d = a - b # Arithmetic

Operation -Subtractor

print("This is a - c = ",d)

d = a % c # Arithmetic

Operation - Modular

23

PROGRAMMING IN PYTHON

print("This is a mod c = ",d)

d=a&b # Bitwise Operator

- AND

print("This is a AND c = "+str(d))

d=a | b # Bitwise

Operator - OR

print("This is a OR c = ",d)

d=a ^ b # Bitwise

Operator - XOR

print("This is a XOR c = ",d)

d= ~b

print("This is NOT a = ",d)

d= a<<1

print("This is a << 1= "+str(d)) # Bitwise

Operator - Left Shift

d= a>>1

print("This is a >> 1= ",d) # Bitwise

Operator - Right Shift

d= ++a

print("This is d= "+str(d)+" And a=",a) # Increment

d= --a

print("This is d= ",d," And a=",a) # Decrement

Below segment is to test relational operators

a=4

b=5

c=6

d=4

print(a==b) # Equality

print(a==d) # Equality

print(a<b) # Less than

print(c>=b) # Greater Pr Equal

print(a!=d) # Not Equal to

Run the program and observe the result.

24

PROGRAMMING IN PYTHON

Arithmetic Expressions
An expression derived using numbers and numerical operators are arithmetic expressions. Consider the expression
a=2+4*5. The result stored in a are differently calculated as 30 by first adding 2+4 and multiplying it by 5 or 22 by
multiplying 4*5 and then adding 2 to it. Here, 22 is the correct answer. To avoid this confusion, a methodology is
followed to construct an expression to obtain correct result. It is called Hierarchy of operation .

Hierarchy of operation
Hierarchy of operation is nothing but following certain order to construct a numerical expression to obtain correct
result when involving it in a computer program. The order is as shown as below:

1. Simplifying Unary Operators
2. Simplifying Exponents
3. Multiplication and Division
4. Addition and Subtraction

The above steps to be carried out from Left To Right direction in an expression. If any sub-expression is placed in an
expression enclosed with parenthesis (brackets) it has to be simplified first. If more than one sub expression appears,
the left most one must be simplified and the remaining will be in left-to-right direction.

Example:

Consider the arithmetic expression 23-(4+5) x 4/2+(7 x 22). This expression will be solved by following the Hierarchy
of operation procedure as follows:

23-(4+5) x 4/2+(7 x 22)

Step-1: (Simplifying sub expressions before all. Here there are two sub expressions available. The left most sub
expression will be simplified first)

23-(4+5) x 4/2+(7 x 22) = 23-9x4/2+(7x22)

Step-2: (Simplifying the second sub expression. Within the second sub expression, there is 22. It has to be solved as per
the Hierarchy)

23-9x4/2+(7x22) = 23-9x4/2+(7x4)

25

PROGRAMMING IN PYTHON

Step-3: (Simplify the remaining portion of the second sub expression)

23-9x4/2+(7x22) = 23-9x4/2+28

Step-4: (No more sub expressions. Now find out if there are exponents in this expressions. There is 23.Simplify that).
8-9x4/2+28.

Step5: (No more exponents. Simplify multiplication and divisions if any, and solve them simultaneously from left to
right direction)

8-36/2+28
=8-18+28

Step-6: (No more multiplications and divisions. Simplify addition and subtraction if any, and solve them simultaneously
from left to right direction).

=36-18
=18.

Below python program simplifies and gives the result.

Program to simplify a complex arithmetic expression

#Sample program to simplify a complex arithmetic expression

print(2**3-(4+5)*4/2+(7*2**2))
Output:
Python 3.10.3 (tags/v3.10.3:a342a49, Mar 16 2022, 13:07:40) [MSC v.1929 64 bit

(AMD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

=== RESTART: C:/Users/itsra/AppData/Local/Programs/Python/Python310/Cmplx.py ===

18.0

Control Statements
Unconditional Control Commands
Unconditional control statement is used to control the regular flow of program execution to change and jump to
another command and continue execution.

Continue
Continue command will be used to ignore the code segments in for loop or while loop and proceed with the next
iteration of the loop.

Example
Below segment of program shows how the control is deviated without any condition.

foriinrange(1,10):

 ifi==8:

 continue

 print(i)

print("For Loop Ends")

In the above example of code segment, the continue commands forces the computer control to jump back to the “for”
loop ignoring the below command even if it is placed inside the “for” loop. The output is shown in the sample program
shows various usages of “for” loop under “for” loop topic.

26

PROGRAMMING IN PYTHON

Break
break command will force the program to skip and quit executing the code segments given below the break in a
block of commands segment given inside an if else command or within a for and while loop.

Example:

foriinrange(1,10):

 ifi==7:

 break

 else:

 print(i)

print("For Loop Ends")

Conditional Control Commands
Conditional control commands are used to control the regular flow of the program execution (line by line in a top to
down direction) based on a condition. If a condition is checked and if the condition results True, the control can be
diverted to execute a specific set of one or more commands. If the condition results False, the control can be diverted
to execute another set of one or more commands leaving the set of commands of True result unexecuted.

If-elif-else:
The general format of the usage of this command is:

if<condition1>:
 True part commands set
elif<condition2>:
 commands set if condition1 = false and condition2 = true
else:

commands set if both condition1 and condition2 are false

Payroll Program:

#Sample Payroll program for a single employee

d="Y"

while d=="Y":

 emp_no=input("Enter Employee Number:")

 basic=float(input("Enter Basic Salary:"))

 hra=int(input("Enter HRA%:"))

 da=int(input("Enter DA%:"))

 hra=basic * hra/100

 da=basic * da/100

 gross=basic + hra + da

 if gross<50000:

 tax=0

27

PROGRAMMING IN PYTHON

 else:

 tax=gross * 0.02

 net=gross-tax

 print("Employee No:",emp_no)

 print("Basic Salary: ",basic)

 print("HRA: ",hra)

 print("DA: ",da)

 print("Gross Salary: ",gross)

 print("Tax: ",tax)

 print("Net Salary: ",net)

 d=input("Do You Want To Continue? (Y/N)")

print("Program Ends")

Output:

Program to find biggest among three numbers

#Finding biggest among three numbers

a=int(input("Enter value for a:"))

b=int(input("Enter Value For b:"))

c=int(input("Enter Value for c:"))

ifa>b:

 ifa>c:

 print("a",a)

28

PROGRAMMING IN PYTHON

 else:

 print("c",c)

elifb>c:

 print("b",b)

else:

 print("c",c)

Output:

Repetitive Control Commands
Repetitive control commands are used to execute a set of one or more commands repeatedly specific number of times
or until a condition becomes false.

For loop
for command is used to execute a set of commands repeatedly multiple times. There are various usages of for
command.

The General format of for loop usage-1:
for<variable> in <list/array>:
 <commands to be executed repeatedly, until the existence of expression elements>
<commands out of for loop>

Example:

#Usage-1 of For loop

exp=[123,53,678,222,986]

foriinexp:

 print(i)

 print("I=",i)

print("For Loop Ends")

#Usage-2 of For loop

foriinrange(1,11,2):

 print(i)

29

PROGRAMMING IN PYTHON

foriinrange(1,10):

 ifi==7:

 break

 else:

 print(i)

print("For Loop Ends")

#Usage-3 of For loop

foriinrange(1,10):

 ifi==8:

 continue

 print(i)

print("For Loop Ends")

Output:

In the above example, there is an array named “exp” that contains 5 numeric elements is used. A variable “i” is
initialized in for loop. A print command to print the value of “I” is placed inside the “for” loop. Another print command
is placed outside the “for” loop with a display message “That is all” to mention that the loop has ended.

Sample program using for in loop

exp=[123,53,678,222,986]

foriinexp:

 print(i)

 print("I=",i)

print("That is all:")

Program to print Prime numbers within a given N range

#Program to find Prime Numbers within a range of given N number

x=0.0

30

PROGRAMMING IN PYTHON

n=int(input("Enter A number to find Prime numbers within its

range: "))

print(1,"is a prime number")

foriinrange(1,n+1):

 forjinrange(2,i+1):

 x=i%j

 if (x==0andj<i):

 s="NP"

 else:

 print(i,"is a prime number")

 break

print("End of Program.")

The Output is
Python 3.10.3 (tags/v3.10.3:a342a49, Mar 16 2022, 13:07:40) [MSC v.1929

64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

======================== RESTART: E:\pythonprj\prime.py

========================

Enter A number to find Prime numbers within its range: 40

1 is a prime number

2 is a prime number

3 is a prime number

5 is a prime number

7 is a prime number

9 is a prime number

11 is a prime number

13 is a prime number

15 is a prime number

17 is a prime number

19 is a prime number

21 is a prime number

23 is a prime number

25 is a prime number

27 is a prime number

29 is a prime number

31 is a prime number

33 is a prime number

35 is a prime number

37 is a prime number

39 is a prime number

End

While loop
While loop is used to execute one or more commands repeatedly until as long as a condition is true.

31

PROGRAMMING IN PYTHON

General Format:
While <Condition>:
 S1
 S2
 |
 |
 Sn
Sc1
Sc2
|
|

Where S1, S2, Sn are the commands to be executed repeatedly until the <condition> given besides the While command
becomes false. If it becomes false, the commands under the while loop (S1,S2,…Sn) will not be executed and the
computer control starts executing commands Sc1,Sc2,…and continues.

Note: A program segment that makes the condition to become false, must be present inside the while loop. Otherwise,
the program segment inside While loop will be executed repeatedly infinetly.

Example:
 I=0

 While i<-10

 Print(i)

 I=i+1

 Print(“Program Ends”)

In the above example, a variable ‘I’ is initialized to 0. The condition i<=10 is checked. If it is True, the commands within
while loop i.e., print(i) and i=i+1 will be executed repeatedly as long as the condition is True. If i>10, the repeated
execution will end and the computer will execute the command print(“Program Ends”).

In the above example, i=i+1 is the expression that changes the status of the condition to false.
Exercises:

1. Write a python program to read 2 names and print them line by line in alphabetically sorted in ascending order
or in descending order as per the option given as an input, as follows:

Enter Name1:_MAN MACHINE
Enter Name2:_MORRIS TOWN
Ascending or Descending? (Type A/D):D
MORRIS TOWN
MAN MACHINE
Do you want to continue (Y/N)?Y

Enter Name1:_REX KING_
Enter Name2:_KIT WALKER
Ascending or Descending? (Type A/D): A
KIT WALKER
REX KING
Do you want to continue (Y/N)? N
Thank You!

2. Write a program to evaluate below arithmetic expression and verify the result that it is evaluated as per the
Hierarchy of operation on an arithmetic expression.

(22-32)(35 – 7/4 x (1+2)

32

PROGRAMMING IN PYTHON

3. Write a program to evaluate and print the result. Also check that it is true or false and print TRUE or FALSE
accordingly:

52 - 102= (5 + 10) (5-10)

4. Write a program to find N! (factorial value for N i.e., N!=1 x 2 x 3 x…x N)

Python (Data) Collections
More Data types

Setting the Data Type
In Python, the data type is set when you assign a value to a variable:

Data Type

x = "Hello World" str

x = 20 Int

x = 20.5 Float

x = 1j Complex

x = ["apple", "banana", "cherry"] List

x = ("apple", "banana", "cherry") Tuple

x = range(6) Range

x = {"name" : "John", "age" : 36} Dict

x = {"apple", "banana", "cherry"} Set

x = frozenset({"apple", "banana", "cherry"}) Frozenset

x = True Bool

x = b"Hello" Bytes

x = bytearray(5) Bytearray

x = memoryview(bytes(5)) Memoryview

x = None NoneType

Setting the Specific Data Type
If you want to specify the data type, you can use the following constructor functions:

Data Type

x = str("Hello World") Str

x = int(20) Int

x = float(20.5) float

x = complex(1j) complex

x = list(("apple", "banana", "cherry")) List

x = tuple(("apple", "banana", "cherry")) tuple

x = range(6) range

x = dict(name="John", age=36) dict

x = set(("apple", "banana", "cherry")) Set

x = frozenset(("apple", "banana", "cherry")) frozenset

x = bool(5) bool

x = bytes(5) bytes

x = bytearray(5) bytearray

x = memoryview(bytes(5)) memoryview

The following code example would print the data type of x, what data type would that be?

33

PROGRAMMING IN PYTHON

x = 5
print(type(x))

Arrays
An array is a special variable can hold more than one value at a time. Arrays are used to store multiple values in one
single variable. Python uses List type of data as arrays.

Example
Create an array containing car names:

cars = ["Ford", "Volvo", "BMW"]

If you have a list of items (a list of car names, for example), storing the cars in single variables could look like this:

car1 = "Ford"
car2 = "Volvo"
car3 = "BMW"

Using of array gives you a solution to find one car among 300 cars. An array can hold many values under a single name,
and you can access the values by referring to an index number.

Access the Elements of an Array

We can access an elementary value from an array by referring to the index number.

Example
If we want to get the first car name from an array named cars:

x = cars[0]

Modifying an array element
Modify the value of the first array item:

cars[0] = "Toyota"

Length of an Array
To find the length of an array i.e., how many elements are in an array, the len() method can be used. It returns the
length of an array (the number of elements in an array).
Example

x = len(cars)
will return the length of the array cars.

Looping Array Elements
By using for in loop we can loop through all the elements of an array.
Example
Print each item in the cars array:

for x in cars:
 print(x)

Adding Array Elements

To add an element to an array variable, append() method is used.
Example
To add one more element to the cars array:

cars.append("Honda")

Removing Array Elements
pop() method is to remove an element from the array by index.

34

PROGRAMMING IN PYTHON

Example
Delete the second element of the cars array:

cars.pop(1)

remove() method is used to remove an element from an array variable by its value,
Example
Delete the element that has the value "Volvo":

cars.remove("Volvo")

The above command willremove the first occurrence of the specified value.

Sample program using for loop and Array

#Sample Program To Sort 10 Car names inputted unordered and

sort them in ascending order

cars=[]

foriinrange(0,10):

 cars.append(input("Enter Car Name"+str(i)+": "))

foriinrange(0,9):

 forjinrange(i+1,10):

 ifcars[i] >= cars[j]:

 t=cars[j]

 cars[j]=cars[i]

 cars[i]=t

foriinrange(0,10):

 print(cars[i])

Lists
Lists are used to store multiple items in a single variable.

Lists are one of 4 built-in data types in Python used to store collections of data, the other 3 are Tuple, Set,

and Dictionary, all with different qualities and usage.
Lists are created using square brackets:

Create a List
Assigning multiple values to a variable separated by commas within a “[]” bracket will create a list

List1 = ["apple", "jackfruit", "cherry"]
print(list1)

List Items
List items are ordered, changeable, and allow duplicate values.They are indexed, the first item has index [0], the
second item has index [1] etc.

Ordered List
A list is an ordered list when its items have a defined unchanged order. When an item is added to a list it will be placed
as the last item at the end of the list. There are exceptions when some list methods are used to change the order of
list.

https://www.w3schools.com/python/python_tuples.asp
https://www.w3schools.com/python/python_sets.asp
https://www.w3schools.com/python/python_dictionaries.asp

35

PROGRAMMING IN PYTHON

Changeable List
The list can be change by adding and removing items to or from a list after it was created.

Duplicates
lists can have duplicate items with different index.
Example
Lists can have duplicate items

List1 = ["Apple", "Orange", "Mango", “Orange”, "Jack Fruit"]
print(List1)

len() function can be used to return how many items are there in a list has.
Example
Print the number of items in the list:

list=["BoneyM", "ABBA", "Ventures"]
print(len(list))

List items can be of any data type:
Example
String, int and boolean data types:

list1=["BoneyM", "ABBA", "Commandos"]
list2=[1, 5, 7, 9, 3]
list3=[True, False, False]

A list can contain different data types:
Example
A list with strings, integers and boolean values are given below:

list1 = ["Bond", 7, True, 58, "MI6”,”Q”,”Valter PPK]

type()
type() function returns the type of a list
Lists in Python are defined as objects with the data type 'list':

<class 'list'>

Example
Bondlist=["Moore", “Connery”,"Lazenby",”Dalton”, "Brosnon"]
print(type(Bondlist))

list() Constructor
list() can be used as constructor when creating a new list.
Example
The below example shows hos a List() is constructedfrom an array:

a=[]

a.append('Auston Martin”)

a.append('DB5')

a.append('BMT216')

list=list(a)

print(list)

36

PROGRAMMING IN PYTHON

The output is:
Python 3.10.3 (tags/v3.10.3:a342a49, Mar 16 2022, 13:07:40) [MSC v.1929 64 bit

(AMD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

=================== RESTART: E:/pythonprj/List Constructor.py

==================

['Auston Martin’, ‘DB5', 'BMT216']

Python provides four collection data types. They are:
 List - A collection of ordered and changeable items. It also, allows duplicate items to be members.
 Tuple - A collection of ordered and unchangeable items. It also allows duplicate items as members.
 Set - A collection of unordered, unchangeable (but addition and removal is possible), and unindexed items
 No duplicate members are allowed.
 Dictionary - A collection of ordered and changeable. In older versions of python, unordered items are allowed.
 No duplicate members are allowed.

Choosing the right type of collection a data set will be done by considering their properties.

Exercises:
1. Write a program to sort N numbers using While loop
2. Write a program to read a list with multiple data types and to create another list with the same elements of the first
list and of same data type.

Program to test list

#Program to test Python Lists

#Creating a List

lst = ['Lists',6.3,2.2,12,32]

print(lst)

#List with size

size = [1]*10

print(size)

size = ['series']*5

print(size)

#variable as size and list value

n = 4

x=7

lst2 = [x]*n

print(lst2

#Splitting words from a sentence as list items

https://www.w3schools.com/python/python_tuples.asp
https://www.w3schools.com/python/python_sets.asp
https://www.w3schools.com/python/python_dictionaries.asp

37

PROGRAMMING IN PYTHON

value = "Fear leads to anger; Anger leads to Hate; Hate leads

to sufferings"

print(value.split())

#Forming a sentence from list items

jedi = ['The','Force','is strong']

pverb = ' '.join(jedi)

print(pverb)

#List of lists

lst1=[1542,1547,1539,1548]

lst2=[1525,1516]

cmbLst= []

cmbLst.append(lst1)

cmbLst.append(lst2)

print("List1: ",lst1)

print("List2: ",lst2)

print("combined lists:",cmbLst)

#Creating List from dictionary

snames = {'Luke': 11, 'Leia': 12, 'Han':13, 'Lando': 14}

Lst = [(key,val) for key,val in snames.items()]

print(f"List from Dictionary : {Lst}")

#List of floating point numbers

fl_list = ["1.1", "3.5", "7.6"]

print(fl_list)

nfl_list = []

foriinfl_list:

 nfl_list.append(float(i))

print(nfl_list)

#Creating a list with elements with range

rno = [*range(1501,1549)]

print(rno)

38

PROGRAMMING IN PYTHON

#Adding elements to list after creating it, using for loop

token = ['667', '632', '567', '416', '839']

lst = []

foriintoken:

 lst.append(int(i))

print(lst)

#Creating list with a range

max_range = 10

lst = list(range(max_range))

print(lst)

Correcting mistake values in a list

odd = [2, 4, 6, 8]

print(odd)

 # change the 1st item

odd[0] = 1

print(odd)

 # change 2nd to 4th items

odd[1:4] = [3, 5, 7]

print(odd)

List Methods

LIST METHODS

Method Description

append() Adds an element at the end of the list

clear() Removes all the elements from the list

copy() Returns a copy of the list

count() Returns the number of elements with the specified value

extend() Add the elements of a list (or any iterable), to the end of the current list

index() Returns the index of the first element with the specified value

insert() Adds an element at the specified position

pop() Removes the element at the specified position

remove() Removes the first item with the specified value

reverse() Reverses the order of the list

sort() Sorts the list

39

PROGRAMMING IN PYTHON

Tuples
Tuples are used to store multiple items in a single variable.
Tuple is one of 4 built-in data collection of Python.
A tuple is a collection that is ordered and unchangeable.
Tuples are written with round brackets.

Example
The below code will create a Tuple:

tuple = ("apple", "banana", "cherry")
print(tuple)

Tuple Items
Tuple items are ordered, unchangeable, and allow duplicate values.
Tuple items are indexed, the first item has index [0], the second item has index [1] etc.

Ordered
If the items are in a defined order, then the tuple is ordered and that order will not change.

Unchangeable
Tuples are unchangeable. No items can be changed, added or removed directly after the tuple has been created.

Allow Duplicates
Tuples are indexed. They can have items with the same value in different indices.

Example

tuple = ("apple", "banana", "cherry", "apple", "cherry")
print(tuple)

Tuple Length
len() function can be used to get the length of a Tuple.

Example
Print the number of items in the tuple:

tuple = ("apple", "banana", "cherry")
print(len(tuple))

Create Tuple With a single Item
A single item tuple can be created by adding a comma after the item. Otherwise Python will not recognize it as a
tuple.
Example
One item tuple, remember the comma:

tuple1 = ("apple",)
print(type(tuple1))

Below is not a tuple:

tuple2 = ("apple")
print(type(tuple2))

Tuple Items - Data Types
Tuple items can be of any data type:
Example
String, int and boolean data types:

40

PROGRAMMING IN PYTHON

tuple1 = ("apple", "banana", "cherry")
tuple2 = (1, 5, 7, 9, 3)
tuple3 = (True, False, False)

A tuple can contain different data types:
Example
A tuple with strings, integers and boolean values:

tuple1 = ("abc", 34, True, 40, "male")

type()
From Python's perspective, tuples are defined as objects with the data type 'tuple':

<class 'tuple'>
Example
To check what is the data type of a tuple, type() function is used in tuple as follows:

tuple1 = ("apple", "banana", "cherry")
print(type(tuple1))

Array Methods
Below table contains all methods can be used on Arrays and Lists:

mytuple = ("apple", "banana", "cherry")

The tuple() Constructor
It is also possible to use the tuple() constructor to make a tuple.

Example
The below example shows how to use the tuple() method to make a tuple:

tuple = tuple(("apple", "banana", "cherry")) # note the double round-brackets
print(tuple)

Access Tuple Items
You can access tuple items by referring to the index number, inside square brackets:
Example
Print the second item in the tuple:

Tuple1 = ("apple", "banana", "cherry")
print(tuple[1])

Note: The first item is placed in index 0.

Update Tuples
Once the tuple is created, they are unchangeable, i.e., you cannot change, add, or remove items. But it is possible
indirectly.

Change Tuple Values
Example
Convert the tuple into a list to be able to change it:

x = ("apple", "banana", "cherry")
y = list(x)
y[1] = "kiwi"
x = tuple(y)
print(x)

Add Items
Since tuples are immutable, they do not have a build-in append() method, but there are other ways to add items to
a tuple.

41

PROGRAMMING IN PYTHON

1. Convert into a list: Just like the workaround for changing a tuple, you can convert it into a list, add your
item(s), and convert it back into a tuple.
Example
Convert the tuple into a list, add "orange", and convert it back into a tuple:

tuple1 = ("apple", "banana", "cherry")
y = list(tuple1)
y.append("orange")
tuple1 = tuple(y)

2. Add tuple to a tuple. You are allowed to add tuples to tuples, so if you want to add one item, (or many), create a
new tuple with the item(s), and add it to the existing tuple:
Example
Create a new tuple with the value "orange", and add that tuple:

thistuple = ("apple", "banana", "cherry")
y = ("orange",)
thistuple += y
print(thistuple)

Note: When creating a tuple with only one item, remember to include a comma after the item, otherwise it will not
be identified as a tuple.

Remove Items
Note: You cannot remove items in a tuple.

Tuples are unchangeable, so you cannot remove items from it, but you can use the same workaround as we used for
changing and adding tuple items:
Example
Convert the tuple into a list, remove "apple", and convert it back into a tuple:

Tuple1 = ("apple", "banana", "cherry")
y = list(tuple1)
y.remove("apple")
tuple1 = tuple(y)

or you can delete the tuple completely:
Example
The del keyword can delete the tuple completely:

tuple1 = ("apple", "banana", "cherry")
del tuple1
print(tuple1) #this will raise an error because the tuple no longer exists

Unpack Tuples
When we create a tuple, we normally assign values to it. This is called "packing" a tuple:
Example
Packing a tuple:

fruits = ("apple", "banana", "cherry")

But, in Python, we are also allowed to extract the values back into variables. This is called "unpacking":
Example
Unpacking a tuple:

fruits = ("apple", "banana", "cherry")
(green, yellow, red) = fruits
print(green)

42

PROGRAMMING IN PYTHON

print(yellow)
print(red)

Note: The number of variables must match the number of values in the tuple, if not, you must use an asterisk to
collect the remaining values as a list.

Using Asterisk(*)
If the number of variables is less than the number of values, you can add an * to the variable name and the values
will be assigned to the variable as a list:
Example
Assign the rest of the values as a list called "red":

fruits = ("apple", "banana", "cherry", "strawberry", "raspberry")
(green, yellow, *red) = fruits
print(green)
print(yellow)
print(red)

If the asterisk is added to another variable name than the last, Python will assign values to the variable until the
number of values left matches the number of variables left.
Example
Add a list of values the "tropic" variable:

fruits = ("apple", "mango", "papaya", "pineapple", "cherry")
(green, *tropic, red) = fruits
print(green)
print(tropic)
print(red)

Loop Tuples
You can loop through the tuple items by using a for loop.
Example
Iterate through the items and print the values:

thistuple = ("apple", "banana", "cherry")
for x in thistuple:
 print(x)

Loop Through the Index Numbers
You can also loop through the tuple items by referring to their index number.
Use the range() and len() functions to create a suitable iterable.
Example
Print all items by referring to their index number:

thistuple = ("apple", "banana", "cherry")
for i in range(len(thistuple)):
 print(thistuple[i])

Using a While Loop
You can loop through the list items by using a while loop.
Use the len() function to determine the length of the tuple, then start at 0 and loop your way through the tuple
items by refering to their indexes.
The index has to be increased by 1 after each iteration.
Example
Print all items, using a while loop to go through all the index numbers:

tuple = ("apple", "banana", "cherry")
i = 0

43

PROGRAMMING IN PYTHON

while i< len(tuple):
 print(thistuple[i])
 i = i + 1

Join Tuples
Using (+) operator, two tuples can be joined:
Example
Join two tuples:

tuple1 = ("a", "b", "c")
tuple2 = (1, 2, 3)
tuple3 = tuple1 + tuple2
print(tuple3)

Multiply Tuples
If you want to multiply the content of a tuple a given number of times, you can use the * operator:
Example
Multiply the fruits tuple by 2:

fruits = ("apple", "banana", "cherry")
mytuple = fruits * 2
print(mytuple)

Tuple Methods
Python has two built-in methods that you can use on tuples.

TUPLE METHODS

Method Description

count() Returns the number of times a specified value occurs in a tuple

index() Searches the tuple for a specified value and returns the position of where it was found

Sample program with Tuples exercises

#Sample Program with Tuples Excercise

tuple = ("apple", "banana", "cherry")

print(tuple)

print(type(tuple))

#Duplicates

tuple = ("apple", "banana", "cherry", "apple", "cherry")

print(tuple)

#Length

tuple = ("apple", "banana", "cherry")

print(len(tuple))

#Create Tuple

tuple1 = ("apple",)

print(type(tuple1))

#Not a Tuple

tuple1 = ("apple")

print(type(tuple1))

https://www.w3schools.com/python/ref_tuple_count.asp
https://www.w3schools.com/python/ref_tuple_index.asp

44

PROGRAMMING IN PYTHON

#Tuples with different data types

tuple1 = ("abc", 34, True, 40.55, "male")

print(tuple1)

print(type(tuple1[0]))

print(type(tuple1[1]))

print(type(tuple1[2]))

print(type(tuple1[3]))

print(type(tuple1[4]))

#Add item Indirectly - Convert Tuple to list

x = ("apple", "banana", "cherry")

y = list(x)

y.append("Jackfruit")

print(y)

Add an item while creating tuple

tuple1 = ("apple", "banana", "cherry")

y = ("orange",)

tuple1 += y

print(tuple1)

#Update item Indirectly - Convert Tuple to list

x = ("apple", "banana", "cherry")

y = list(x)

y[1] = "kiwi"

print(y)

#v=tuple(y)

print(type(y))

print(y)

Remove item indirectly

tuple2 = ("apple", "banana", "cherry")

y = list(tuple2)

y.remove("apple")

#tuple2 = tuple(y)

print(tuple2)

#Unpacking tuple

fruits = ("apple", "banana", "cherry")

(green, yellow, red) = fruits

print(green)

print(yellow)

print(red)

Using '*' to unpack

fruits = ("apple", "banana", "cherry", "strawberry", "raspberry")

(green, yellow, *red) = fruits

print(green)

print(yellow)

print(red)

45

PROGRAMMING IN PYTHON

#type2

fruits = ("apple", "mango", "papaya", "pineapple", "cherry")

(green, *tropic, red) = fruits

print(green)

print(tropic)

print(red)

Dictionaries
Dictionaries are used to store data values in key: value pairs.
A dictionary is an ordered*, changeable collection of data and does not allow duplicates.

dict1 = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

Dictionaries are written with curly brackets, and have keys and values:
Example
Create and print a dictionary:

dict = {
 "brand": "Ford",
 "model": "Mustang",
 "year": 1964
}
print(dict)

Dictionary Items
Dictionary items are ordered, changeable, and does not allow duplicates.
Dictionary items are presented in key: value pairs, and can be referred to by using the key name.
Example
Print the "brand" value of the dictionary:

dict1 = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

print(dict["brand"])

Ordered / Unordered
From Python version 3.7, dictionaries are ordered. Dictionaries are unordered in Python 3.6 and earlier
versions.
If items are in a defined order and that order will not change, then the Dictionary is ordered.
If items are not in a defined order, you cannot refer to an item by using an index. This is unordered dictionary

Changeable
Dictionaries are changeable. Add or remove items can be done is a dictionary after it is created.

46

PROGRAMMING IN PYTHON

Duplicates Not Allowed
Dictionaries cannot have two items with the same key:
Example
Duplicate values will overwrite existing values:

dict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964,

 "year": 2020

}

print(dict)

Dictionary Length
To determine how many items a dictionary has, use the len() function:
Example
Print the number of items in the dictionary:

print(len(dict))

Items Data Types
The values in dictionary items can be of any data type:
Example
String, int, boolean, and list data types:

dict = {

 "brand": "Ford",

 "electric": False,

 "year": 1964,

 "colors": ["red", "white", "blue"]

}

type()
Dictionaries are defined as objects with the data type 'dict':

<class 'dict'>

Example
Print the data type of a dictionary:

dict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

print(type(dict))

Accessing Items
The items of a dictionary can be accessed by referring to its key name, inside square brackets:
Example
Get the value of the "model" key:
 dict = {

 "brand": "BMW",

 "model": “750D",

 "year": 2000

 }

 x = dict["model"]

There is also a method called get() that will give you the same result:

47

PROGRAMMING IN PYTHON

Example
Get the value of the "model" key:

x = dict.get("model")

Get Keys
The keys() method will return a list of all the keys in the dictionary.
Example
Get a list of the keys:

x = thisdict.keys()

The list of the keys is a view of the dictionary, meaning that any changes done to the dictionary will be reflected in
the keys list.

Example
Add a new item to the original dictionary, and see that the keys list gets updated as well:

car = {
"brand": "Ford",
"model": "Mustang",
"year": 1964
}

x = car.keys()
print(x) #before the change
car["color"] = "white"
print(x) #after the change

Get Values
The values() method will return a list of all the values in the dictionary.
Example
Get a list of the values:

x = dict.values()
The list of the values is a view of the dictionary, meaning that any changes done to the dictionary will be reflected
in the values list.

Example
Make a change in the original dictionary, and see that the values list gets updated as well:

car = {
"brand": "Ford",
"model": "Mustang",
"year": 1964
}
x = car.values()
print(x) #before the change
car["year"] = 2020
print(x) #after the change

Example
Add a new item to the original dictionary, and see that the values list gets updated as well:

car = {
"brand": "Ford",
"model": "Mustang",
"year": 1964

48

PROGRAMMING IN PYTHON

}
x = car.values()
print(x) #before the change
car["color"] = "red"
print(x) #after the change

Get Items
The items() method will return each item in a dictionary, as tuples in a list.

Example
Get a list of the key: value pairs

x = dict.items()
The returned list is a view of the items of the dictionary, meaning that any changes done to the dictionary will be
reflected in the items list.

Example
Make a change in the original dictionary, and see that the items list gets updated as well:

car = {
"brand": "Ford",
"model": "Mustang",
"year": 1964
}
x = car.items()
print(x) #before the change
car["year"] = 2020
print(x) #after the change

Example
Add a new item to the original dictionary, and see that the items list gets updated as well:

car = {
"brand": "Ford",
"model": "Mustang",
"year": 1964
}
x = car.items()
print(x) #before the change
car["color"] = "red"
print(x) #after the change

Check if Key Exists
To determine if a specified key is present in a dictionary use the in keyword:
Example
Check if "model" is present in the dictionary:

dict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

if "model" in dict:

 print("Yes, 'model' is one of the keys in the dict dictionary")

49

PROGRAMMING IN PYTHON

Change Values
You can change the value of a specific item by referring to its key name:
Example
Change the "year" to 2018:

dict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

dict["year"] = 2018

Update Dictionary
The update() method will update the dictionary with the items from the given argument.
The argument must be a dictionary, or an iterable object with key:value pairs.
Example
Update the "year" of the car by using the update() method:

dict = {
 "brand": "Ford",
 "model": "Mustang",
 "year": 1964
}
dict.update({"year": 2020})

Adding Items
Adding an item to the dictionary is done by using a new index key and assigning a value to it:
Example

dict = {
 "brand": "Ford",
 "model": "Mustang",
 "year": 1964
}
dict["color"] = "red"
print(dict)

Removing Items
There are several methods to remove items from a dictionary:

Example

The pop() method removes the item with the specified key name:
dict = {
 "brand": "Ford",
 "model": "Mustang",
 "year": 1964
}
dict.pop("model")
print(dict)

Example

The popitem() method removes the last inserted item (in versions before 3.7, a random item is removed instead):
dict = {
 "brand": "Ford",
 "model": "Mustang",

50

PROGRAMMING IN PYTHON

 "year": 1964
}
dict.popitem()
print(thisdict)

Example

The del keyword removes the item with the specified key name:
dict = {
 "brand": "Ford",
 "model": "Mustang",
 "year": 1964
}
del dict["model"]
print(dict)

Example

The del keyword can also delete the dictionary completely:
dict = {
 "brand": "Ford",
 "model": "Mustang",
 "year": 1964
}
del dict
print(dict) #this will cause an error because "dict" no longer exists.

Example
The clear() method empties the dictionary:

dict = {
 "brand": "Ford",
 "model": "Mustang",
 "year": 1964
}
dict.clear()
print(dict)

Loop through a Dictionary
You can loop through a dictionary by using a for loop.

When looping through a dictionary, the return value are the keys of the dictionary, but there are methods to return

the values as well.

Example
Print all key names in the dictionary, one by one:

for x in thisdict:
 print(x)

Example

Print all values in the dictionary, one by one:
for x in thisdict:
 print(thisdict[x])

Example
You can also use the values() method to return values of a dictionary:

51

PROGRAMMING IN PYTHON

for x in thisdict.values():
 print(x)

Example

You can use the keys() method to return the keys of a dictionary:
for x in thisdict.keys():
 print(x)

Example

Loop through both keys and values, by using the items() method:
for x, y in thisdict.items():
 print(x, y)

Copy a Dictionary
There are many ways to make a copy of a dictionary. one of the way is to use the built-in dictionary method copy().
Example
Make a copy of a dictionary with the copy() method:

dict = {
 "brand": "Ford",
 "model": "Mustang",
 "year": 1964
}
dict2 = dict.copy()
print(dict)

Another way to make a copy is to use the built-in function dict().
Example
Make a copy of a dictionary with the dict() function:

dict = {
 "brand": "Ford",
 "model": "Mustang",
 "year": 1964
}
dict2 = dict(dict)
print(dict2)

Nested Dictionaries
A dictionary can contain dictionaries, this is called nested dictionaries.
Example
Create a dictionary that contain three dictionaries:

myfamily = {
 "child1" : {
 "name" : "Emil",
 "year" : 2004
 },
 "child2" : {
 "name" : "Tobias",
 "year" : 2007
 },
 "child3" : {
 "name" : "Linus",

52

PROGRAMMING IN PYTHON

 "year" : 2011
 }
}

Or, if you want to add three dictionaries into a new dictionary:

Example
Create three dictionaries, then create one dictionary that will contain the other three dictionaries:

child1 = {
 "name" : "Emil",
 "year" : 2004
}
child2 = {
 "name" : "Tobias",
 "year" : 2007
}
child3 = {
 "name" : "Linus",
 "year" : 2011
}

myfamily = {
 "child1" : child1,
 "child2" : child2,
 "child3" : child3
}

Dictionary Methods
Python has a set of built-in methods that you can use on dictionaries.

DICTIONARY METHODS

Method Description

clear() Removes all the elements from the dictionary

copy() Returns a copy of the dictionary

fromkeys() Returns a dictionary with the specified keys and value

get() Returns the value of the specified key

items() Returns a list containing a tuple for each key value pair

keys() Returns a list containing the dictionary's keys

pop() Removes the element with the specified key

popitem() Removes the last inserted key-value pair

setdefault()

Returns the value of the specified key. If the key does not exist: insert the key,
with the specified value

update() Updates the dictionary with the specified key-value pairs

values() Returns a list of all the values in the dictionary

Sample Program using Dictionary Methods

DIctionary keys

food = {'Tom': 'Burger', 'Jim': 'Pizza', 'Tim': 'Donut'}

f = food.keys()

print(f)

DIctionary values

https://www.w3schools.com/python/ref_dictionary_clear.asp
https://www.w3schools.com/python/ref_dictionary_copy.asp
https://www.w3schools.com/python/ref_dictionary_fromkeys.asp
https://www.w3schools.com/python/ref_dictionary_get.asp
https://www.w3schools.com/python/ref_dictionary_items.asp
https://www.w3schools.com/python/ref_dictionary_keys.asp
https://www.w3schools.com/python/ref_dictionary_pop.asp
https://www.w3schools.com/python/ref_dictionary_popitem.asp
https://www.w3schools.com/python/ref_dictionary_setdefault.asp
https://www.w3schools.com/python/ref_dictionary_update.asp
https://www.w3schools.com/python/ref_dictionary_values.asp

53

PROGRAMMING IN PYTHON

food = {'Tom': 'Burger', 'Jim': 'Pizza', 'Tim': 'Donut'}

f = food.values()

print(f)

Dictionary Get()

employee = {1020: 'Kim', 1021: 'Ani', 1022: 'Mishka'}

print(employee.get(1021))

employee = {1020: 'Kim', 1021: 'Ani', 1022: 'Mishka'}

print(employee.get(1023))

Dictionary Add

employee = {1020: 'Kim', 1021: 'Ani', 1022: 'Mishka'}

employee[1023] = 'Tom'

print(employee)

#Dictionary Len()

employee = {1020: 'Kim', 1021: 'Ani', 1022: 'Mishka'}

print(len(employee))

#Dictionary Update()

employee = {1020: 'Kim', 1021: 'Ani', 1022: 'Mishka'}

employee.update({1023: 'Ritika'})

print(employee)

#Dictionary List

dict = {}

dict["Name"] = ["Jack"]

dict["Marks"] = [45]

print(dict)

#Dictionary Comprehension

dict1 = {n:n*3for n inrange(6)}

print(dict1)

#Key Existence check

my_dict = {"name": "Harry", "roll": "23", "marks": "64"}

if"marks"inmy_dict:

 print("Yes, 'marks' is one of the keys in dictionary")

#Removing a key

 my_dict = {"name": "Harry", "roll": "23", "marks": "64"}

delmy_dict["roll"]

print(my_dict)

#Pop()

my_dict = {"name": "Harry", "roll": "23", "marks": "64"}

my_dict.pop("roll")

print(my_dict)

#Finding max() value

54

PROGRAMMING IN PYTHON

my_dictionary = {"avinav": 11, "John": 22, "nick": 23}

maximum_key = max(my_dictionary, key=my_dictionary.get)

print(maximum_key)

#Finding min() value

my_dictionary = {"avinav": 111, "John": 222, "nick": 223}

minimum_key = min(my_dictionary, key=my_dictionary.get)

print(minimum_key)

#Clear() method

Student = {

 "Nick": "America",

 "Roll": 154,

 "year": 2019

}

print(Student)

Student.clear()

print(Student)

Sets
Sets store multiple items in a single variable like Arrays, List, Tuples and Dictionary.
A set is a collection of data that is unordered, unchangeable, and unindexed.

 set1 = {"apple", "banana", "cherry"}

Note: Set items are unchangeable.But you can remove items and add new items.
Sets are written with curly brackets.

Create a Set
Example

set1 = {"apple", "banana", "cherry"}
print(set)

Note: Sets are unordered, so you cannot be sure in which order the items will appear.

Set Items
Set items do not allow duplicate values.

Unordered
Unordered means that the items in a set do not have a defined order.
Set items appear in a different order every time when used, and cannot be referred to by index or key.

Unchangeable
The items cannot be changed in a set after creating it.
Once a set is created, its items cannot be changed.But items can be removed and can be addedwith the new items.

Duplicates Not Allowed
Two items with the same value will not be allowed to be placed in a set.
Example
Duplicate values will be ignored:

set1 = {"apple", "banana", "cherry", "apple"}
print(set1)

55

PROGRAMMING IN PYTHON

The output will be
===================== RESTART: D:/pythonprj/set_duplicte.py ====================
{'banana', 'cherry', 'apple'}

Length of a Set
To determine how many items a set has, use the len() function.

Example
Get the number of items in a set:

set1 = {"apple", "banana", "cherry"}
print(len(set))

Data Types of Set Items
Set items can have data of any type

Example

set1 = {"apple", "banana", "cherry"}
set2 = {1, 5, 7, 9, 3}
set3 = {True, False, False}

A set can contain items with mixed data types:

Example
A set with strings, integers and boolean values:

set1 = {"abc", 34, True, 40, "male"}

type()
From Python's perspective, sets are defined as objects with the data type 'set':

<class 'set'>

Example
What is the data type of a set?

myset = {"apple", "banana", "cherry"}
print(type(myset))

set() Constructor
It is also possible to use the set() constructor to make a set.

Example
Using the set() constructor to make a set:

set1 = set(("apple", "banana", "cherry")) # note the double round-brackets
print(set1)

Access Items
You cannot access items in a set by referring to an index or a key.

But you can loop through the set items using a ‘for’ loop, or ask if a specified value is present in a set, by using

the in keyword.

Example
Loop through the set, and print the values:

56

PROGRAMMING IN PYTHON

set1 = {"apple", "banana", "cherry"}
for x in set1:
 print(x)

Example

Check if "banana" is present in the set:
set1 = {"apple", "banana", "cherry"}
print("banana" in set1)

Change Items
Once a set is created, you cannot change its items, but you can add new items.

Add Items
Once a set is created, you cannot change its items, but you can add new items.

To add one item to a set use the add() method.

Example

Add an item to a set, using the add() method:
set1 = {"apple", "banana", "cherry"}
set1.add("orange")
print(set1)

Add Sets

To add items from another set into the current set, use the update() method.

Example
Add elements from tropical into set1:

set1 = {"apple", "banana", "cherry"}
set2 = {"grape", "watermelon", "pomegranade"}
set1.update(set2)
print(set1)

Add Any Iterable
The object in the update() method does not have to be a set, it can be any iterable object (tuples, lists,
dictionaries etc.).

Example
Add elements of a list to at set:

set1 = {"apple", "banana", "cherry"}
list1 = ["Lemon", "Grapefruit"]
set1.update(list1)
print(set1)

Remove Item
To remove an item in a set, use the remove(), or the discard() method.

Example
Remove "banana" by using the remove() method:

bikes = {"YAMAHA", "HONDA", "KAWASAKI","SUZUKI"}
print(bikes)
bikes.remove("SUZUKI")

57

PROGRAMMING IN PYTHON

print(bikes)

Note: If the item to remove does not exist, remove() will raise an error.

Example

Remove "banana" by using the discard() method:
bikes = {"FIAT", "OPEL", "BMW","LEXUS","MERCEDES"}
print(bikes)
bikes.discard("LEXUS")
print(bikes)

Note: If the item to remove does not exist, discard() will NOT raise an error.

pop() method can also be used to remove an item.But this method will remove the last item, not an item at any
position. Since sets are unordered, it will not be known that which item was removed when used pop() method.
The return value of the pop() method is the removed item.

Example

Remove the last item by using the pop() method:
set1 = {"BOEING", "AIRBUS", "DOUGLAS"}
print(set1)
ri = set1.pop()
print(ri)
print(set1)

Note: Sets are unordered, so when using the pop() method, you do not know which item that gets removed.

Example

The clear() method empties the set:
Set1 = {"apple", "banana", "cherry"}
set1.clear()
print(set1)

Example

set1 = {"apple", "banana", "cherry"}
del set1
print(set1)

The del keyword will delete the set completely and the print(set1) statement will return error due to the
inexistence of set1 after deletion.

Loop Items
You can loop through the set items by using for loop:

Example
Loop through the set, and print the values:

Set1 = {"apple", "banana", "cherry"}
for x in set1:
 print(x)

Join Two Sets
There are several ways to join two or more sets in Python.
You can use the union() method that returns a new set containing all items from both sets, or

the update() method that inserts all the items from one set into another:

58

PROGRAMMING IN PYTHON

Example
The union() method returns a new set with all items from both sets:

set1 = {"a", "b" , "c"}
set2 = {1, 2, 3}
set3 = set1.union(set2)
print(set3)

Example
The update() method inserts the items in set2 into set1:

set1 = {"a", "b" , "c"}
set2 = {1, 2, 3}
set1.update(set2)
print(set1)

Note: Both union() and update() will exclude any duplicate items.

Keeping Only the Duplicate Items
The intersection_update() method will keep only the items that are present in both sets.

Example

Keep the items that exist in both set x, and set y:
x = {"apple", "banana", "cherry"}
y = {"google", "microsoft", "apple"}
x.intersection_update(y)
print(x)

The intersection() method will return a new set, that only contains the items that are present in both sets.

Example

Return a set that contains the items that exist in both set x, and set y:
x = {"apple", "banana", "cherry"}
y = {"google", "microsoft", "apple"}
z = x.intersection(y)
print(z)

Keep All, except the Duplicates
The symmetric_difference_update() method will keep only the elements that are NOT present in both
sets.

Example
Keep the items that are not present in both sets:

x = {"apple", "banana", "cherry"}
y = {"google", "microsoft", "apple"}
x.symmetric_difference_update(y)
print(x)

The symmetric_difference() method will return a new set, that contains only the elements that are NOT
present in both sets.

Example
Return a set that contains all items from both sets, except items that are present in both:

x = {"apple", "banana", "cherry"}
y = {"google", "microsoft", "apple"}

59

PROGRAMMING IN PYTHON

z = x.symmetric_difference(y)
print(z)

Set Methods
Python has a set of built-in methods that you can use on sets.

SET METHODS

Method Description

add() Adds an element to the set

clear() Removes all the elements from the set

copy() Returns a copy of the set

difference() Returns a set containing the difference between two or more sets

difference_update() Removes the items in this set and also included in another, specified set

discard() Remove the specified item

intersection() Returns a set, that is the intersection of two other sets

intersection_update()

Removes the items in this set that are not present in other, specified
set(s)

isdisjoint() Returns whether two sets have a intersection or not

issubset() Returns whether another set contains this set or not

issuperset() Returns whether this set contains another set or not

pop() Removes an element from the set

remove() Removes the specified element

symmetric_difference() Returns a set with the symmetric differences of two sets

symmetric_difference_update() inserts the symmetric differences from this set and another

union() Return a set containing the union of sets

update() Update the set with the union of this set and others

Python Strings
Strings
Strings in python are surrounded by either single quotation marks, or double quotation marks.

'hello' is the same as "hello".

You can display a string literal with the print() function:

Example

print("Hello")
print('Hello')

Assign String to a Variable
Assigning a string to a variable is done with the variable name followed by an equal sign and the string:

Example

a = "Hello"
print(a)

Multiline Strings
You can assign a multiline string to a variable by using three quotes:

60

PROGRAMMING IN PYTHON

Example
You can use three double quotes:

a = """Dark side of the force has many,
abilities some,
considered yo be unnatural”””
print(a)

Or three single quotes:

Example

a = '''The force is strong in you,
your inside serves you well,
but it could be made to serve
the dark side.'''
print(a)

Note: in the result, the line breaks are inserted at the same position as in the code.

Strings are Arrays
Like many other popular programming languages, strings in Python are arrays of bytes representing unicode
characters.
However, Python does not have a character data type, a single character is simply a string with a length of 1.
Square brackets can be used to access elements of the string.

Example
Get the character at position 1 (remember that the first character has the position 0):

a = "Hello, World!"
print(a[1])

Looping Through a String
Since strings are arrays, we can loop through the characters in a string, with a for loop.

Example
Loop through the letters in the word "banana":

for x in "banana":
 print(x)

String Length
To get the length of a string, use the len() function.

Example
The len() function returns the length of a string:

a = "Hello, World!"
print(len(a))

Check String
To check if a certain phrase or character is present in a string, we can use the keyword in.

Example
Check if "free" is present in the following text:

61

PROGRAMMING IN PYTHON

txt = "The best things in life are free!"
print("free" in txt)

Example
Print only if "free" is present:

txt = "The best things in life are free!"
if "free" in txt:
 print("Yes, 'free' is present.")

Check if NOT
To check if a certain phrase or character is NOT present in a string, we can use the keyword not in.

Example

Check if "expensive" is NOT present in the following text:

txt = "The best things in life are free!"
print("expensive" not in txt)

Example
print only if "expensive" is NOT present:

txt = "Anakin is good pilot!"
if "ship" not in txt:
 print("No, 'ship' is NOT present.")

Slicing
You can return a range of characters by using the slice syntax.
Specify the start index and the end index, separated by a colon, to return a part of the string.

Example
Get the characters from position 2 to position 5 (not included):

b = "Hello, World!"
print(b[2:5])

Note: The first character has index 0.

Slice From the Start
By leaving out the start index, the range will start at the first character:

Example
Get the characters from the start to position 5 (not included):

b = "Hello, World!"
print(b[:5])

Slice To the End
By leaving out the end index, the range will go to the end:

Example
Get the characters from position 2, and all the way to the end:

b = "Hello, World!"
print(b[2:])

62

PROGRAMMING IN PYTHON

Negative Indexing
Use negative indexes to start the slice from the end of the string:

Example
Get the characters:
From: "o" in "World!" (position -5)
To, but not included: "d" in "World!" (position -2):

b = "Hello, World!"
print(b[-5:-2])

Modify Strings
Python has a set of built-in methods that you can use on strings.

Upper Case
Example

The upper() method returns the string in upper case:
a = "Hello, World!"
print(a.upper())

Lower Case

Example

The lower() method returns the string in lower case:
a = "Hello, World!"
print(a.lower())

Remove Whitespace
Whitespace is the space before and/or after the actual text, and very often you want to remove this space.

Example
The strip() method removes any whitespace from the beginning or the end:

a = " Hello, World! "
print(a.strip()) # returns "Hello, World!"

Replace String

Example

The replace() method replaces a string with another string:
a = "Hello, World!"
print(a.replace("H", "J"))

Split String
The split() method returns a list where the text between the specified separator becomes the list items.

Example
The split() method splits the string into substrings if it finds instances of the separator:

a = "R2D2,C3PO"
print(a.split(",")) # returns ['R2D2', ' C3PO']

63

PROGRAMMING IN PYTHON

String Methods

String Concatenation
To concatenate, or combine, two strings you can use the + operator.

Example

Merge variable a with variable b into variable c:
a = "Queen"
b = "Amidala"
c = a + b
print(c)

Example

To add a space between them, add a " ":
a = "Queen"
b = Amidala"
c = a + " " + b
print(c)

Format - Strings

String Format
As we learned in the Python Variables chapter, we cannot combine strings and numbers like this:

Example

age = 36
txt = "My name is Bond, I am " + age
print(txt)

But we can combine strings and numbers by using the format() method!
The format() method takes the passed arguments, formats them, and places them in the string where the
placeholders {} are:

Example
Use the format() method to insert numbers into strings:

age = 36
txt = "My name is Bond, and I am {}"
print(txt.format(age))

The format() method takes unlimited number of arguments, and are placed into the respective placeholders:

Example

quantity = 3
itemno = 567
price = 49.95
myorder = "I bought {} pieces of item {} for Rs.{}’-"
print(myorder.format(quantity, itemno, price))

You can use index numbers {0} to be sure the arguments are placed in the correct placeholders:

Example

quantity = 3
itemno = 567

64

PROGRAMMING IN PYTHON

price = 49.95
myorder = "I want to pay {2} dollars for {0} pieces of item {1}."
print(myorder.format(quantity, itemno, price))

Python String Formatting
To make sure a string will display as expected, we can format the result with the format() method.

String format()
The format() method allows you to format selected parts of a string.
Sometimes there are parts of a text that you do not control, maybe they come from a database, or user input?
To control such values, add placeholders (curly brackets {}) in the text, and run the values through
the format() method:

Example
Add a placeholder where you want to display the price:

price = 49
txt = "The price is {} dollars"
print(txt.format(price))

You can add parameters inside the curly brackets to specify how to convert the value:

Example
Format the price to be displayed as a number with two decimals:

txt = "The price is {:.2f} dollars"

Multiple Values
If you want to use more values, just add more values to the format() method:

print(txt.format(price, itemno, count))

And add more placeholders:

Example

quantity = 3
itemno = 567
price = 49
myorder = "I want {} pieces of item number {} for {:.2f} dollars."
print(myorder.format(quantity, itemno, price))

Index Numbers
You can use index numbers (a number inside the curly brackets {0}) to be sure the values are placed in the correct
placeholders:

Example

quantity = 3
itemno = 567
price = 49
myorder = "I want {0} pieces of item number {1} for {2:.2f} dollars."
print(myorder.format(quantity, itemno, price))

Also, if you want to refer to the same value more than once, use the index number:

65

PROGRAMMING IN PYTHON

Example

age = 36
name = "John"
txt = "His name is {1}. {1} is {0} years old."
print(txt.format(age, name))

Named Indexes
You can also use named indexes by entering a name inside the curly brackets {carname}, but then you must use
names when you pass the parameter values txt.format(carname = "Ford"):

Example

myorder = "I have a {carname}, it is a {model}."
print(myorder.format(carname = "Ford", model = "Mustang"))

Escape Character
To insert characters that are illegal in a string, use an escape character.

An escape character is a backslash \ followed by the character you want to insert.
An example of an illegal character is a double quote inside a string that is surrounded by double quotes:

Example
You will get an error if you use double quotes inside a string that is surrounded by double quotes:

txt = "We are the so-called "Vikings" from the north."
To fix this problem, use the escape character \":

Example
The escape character allows you to use double quotes when you normally would not be allowed:

txt = "We are the so-called \"Vikings\" from the north."

Escape Characters

Other escape characters used in Python:

ESCAPE CHARACTERS

Code Result

\' Single Quote

\\ Backslash

\n New Line

\r Carriage Return

\t Tab

\b Backspace

\f Form Feed

\ooo Octal value

\xhh Hex value

String Methods
Python has a set of built-in methods that you can use on strings.

Note: All string methods return new values. They do not change the original string.

66

PROGRAMMING IN PYTHON

STRING METHODS

Method Description

capitalize() Converts the first character to upper case

casefold() Converts string into lower case

center() Returns a centered string

count() Returns the number of times a specified value occurs in a string

encode() Returns an encoded version of the string

endswith() Returns true if the string ends with the specified value

expandtabs() Sets the tab size of the string

find() Searches the string for a specified value and returns its position

format() Formats specified values in a string

format_map() Formats specified values in a string

index() Searches the string for a specified value and returns its position

isalnum() Returns True if all characters in the string are alphanumeric

isalpha() Returns True if all characters in the string are in the alphabet

isdecimal() Returns True if all characters in the string are decimals

isdigit() Returns True if all characters in the string are digits

isidentifier() Returns True if the string is an identifier

islower() Returns True if all characters in the string are lower case

isnumeric() Returns True if all characters in the string are numeric

isprintable() Returns True if all characters in the string are printable

isspace() Returns True if all characters in the string are whitespaces

istitle() Returns True if the string follows the rules of a title

isupper() Returns True if all characters in the string are upper case

join() Joins the elements of an iterable to the end of the string

ljust() Returns a left justified version of the string

lower() Converts a string into lower case

lstrip() Returns a left trim version of the string

maketrans() Returns a translation table to be used in translations

partition() Returns a tuple where the string is parted into three parts

replace() Returns a string where a specified value is replaced with a specified value

rfind() Searches the string for a specified value and returns its last position

rindex() Searches the string for a specified value and returns its last position

rjust() Returns a right justified version of the string

rpartition() Returns a tuple where the string is parted into three parts

rsplit() Splits the string at the specified separator, and returns a list

rstrip() Returns a right trim version of the string

split() Splits the string at the specified separator, and returns a list

splitlines() Splits the string at line breaks and returns a list

startswith() Returns true if the string starts with the specified value

strip() Returns a trimmed version of the string

swapcase() Swaps cases, lower case becomes upper case and vice versa

title() Converts the first character of each word to upper case

translate() Returns a translated string

upper() Converts a string into upper case

zfill() Fills the string with a specified number of 0 values at the beginning

67

PROGRAMMING IN PYTHON

Functions
Functions are a small program segment that can be separately written and can be called in a program as many as times
wherever required. The function will run small segment of a program and returns a value to the calling program as a
result.

The mathematical expression ncr=n! r! / (n-r)! uses multiple factorial values n!, r! and (n-r)!. To evaluate this formula

programmatically, we need to write factorial finding program segment in 3 places if written in a single program. First
we need to find factorial value for n, r and for (n-r).and then we need to calculate value for ncr. To simplify this process,
if a function is written to find factorial value and to return the result to the calling program, it can be easily evaluated
by avoiding writing code repeatedly to find factorial value.
A function can be written as below:

G.F: def <function name>(<optional input parameter1,optional input parameter2,…>:
 C1
 C2
 |
 |
 Cn
 return<result>

This function can be called in the calling program as

<variable>=<function name>(<Value for parameter1,Value for parameter2,…>)

The function will execute C1,C2,…Cn commands and returns the result to the calling program and the calling program
will store the result in <variable>.

The below program explains how a function can be written and called in a main program.

Program to find
ncr=n! r! / (n-r)!

#Program for n!r!/(n-r)!

#----Function fact(x) is the function

deffact(x):

 prod=1

 foriinrange(1,x+1):

 prod=prod*i

 print("Factorial Value for "+str(x)+" is: ",prod)

 return prod

#----Main program segment calling function fact()

n=int(input("Enter N: "))

r=int(input("Enter R: "))

f1=fact(n)

f2=fact(r)

68

PROGRAMMING IN PYTHON

f3=fact(n-r)

result=f1*f2/f3

print("Result is: ",result)

Output:

Lambda Function
A lambda function is a small anonymous function. A lambda function can take any number of arguments, but can only
have one expression.

General Format:
lambda arguments : expression

The expression is executed and the result is returned:

Example
Add 10 to argument a, and return the result:

x = lambda a : a + 10
print(x(5))

Lambda functions can take any number of arguments:

Example
Multiply argument a with argument b and return the result:

x = lambda a, b : a * b
print(x(5, 6))

Example
Summarize argument a, b, and c and return the result:

69

PROGRAMMING IN PYTHON

x = lambda a, b, c : a + b + c
print(x(5, 6, 2))

Purpose of Lambda Functions
Lambda is powerful when used as an anonymous function inside another function. If a function definition if found one
argument, that argument will be multiplied with an unknown number:

def myfunc(n):
 return lambda a : a * n

Use that function definition to make a function always doubles the number sent in:
Example

def myfunc(n):
 return lambda a : a * n
mydoubler = myfunc(2)
print(mydoubler(11))

Or, use the same function definition to make a function that always triples the number you send in:
Example

def myfunc(n):
 return lambda a : a * n
mytripler = myfunc(3)
print(mytripler(11))

Or, use the same function definition to make both functions, in the same program:

Example

def myfunc(n):
 return lambda a : a * n
mydoubler = myfunc(2)
mytripler = myfunc(3)
print(mydoubler(11))
print(mytripler(11))

Use lambda functions when an anonymous function is required for a short period of time.

Global Variables
Variables created outside of a function are known as global variables.Global variables can be used both inside of
functions and outside.

Example
Create a variable outside of a function, and use it inside the function

x = "May the force be with you"
def myfunc():
 print(x)
myfunc()

70

PROGRAMMING IN PYTHON

If a variable with the same name or with different name inside a function will be known as local and it can only be used
inside the function inside where the variable is created. The global variable with the same name will remain as global
and with the original value.

Example
Create a variable inside a function, with the same name as the global variable

x = "May the force be with you "
def myfunc():
 x = "Always "
 print(x)
myfunc()
print(x)

The global Keyword
Normally, when a variable is created inside a function that variable is local, and can only be used inside that function.
To create a global variable inside a function, it can use the global keyword.

Example
If the global keyword is used, the variable belongs to the global scope:

def myfunc():
 global x
 x = "fantastic"
myfunc()
print("Python is " + x)

Also if a global variable needs to be changed, it must use the global keyword inside a function.

Example
To change the value of a global variable inside a function, it mut be referred by using the global keyword:

x = "Use the force"
def myfunc():
 global x
 x = "Power of Force"
myfunc()
print(x)

71

PROGRAMMING IN PYTHON

Introduction to Object Oriented Programming:
Classes
The important feature of OOP is to handle classes. Class is a collection of classified methods and attributes. An attribute
is nothing but a variable defined and used inside a class. A method is a function defined and used inside a class.

Objects
An object is an instance created to use class, its attributes, methods and/or everything in python. A program may have
multiple classes and each classes can be used in the program by creating object for each class.

Attributes
An attribute is a variable defined and used inside a class. A class may have one or more attributes.

Methods
A method is a function defined and used inside a class. A class may have one or more methods.
The below example shows how a class and its attributes are defined in a program and are used.

Create a Class
The keyword class: is used to create a class

class student:

 Name="Student Name"

 R_No="Student Roll Number"

 defstudent_details(self):

 result=self.Name+self.R_No

 return result

 #return "You have entered Name as “+self.Name+” and “+self.R_No

obj=student()

print("Name: "+obj.Name)

print("Roll No: "+obj.R_No)

print("Method outputs "+obj.student_details())

The output is

Here, student is the name of class, Name andR_No are the attributes and student_details() is the method defined
inside the class student.

72

PROGRAMMING IN PYTHON

An object obj is created as instance to the class student in the program and the attributes and method inside the class
is used in the program as below:

print("Name: "+obj.Name)

print("Roll No: "+obj.R_No)

print("Method outputs "+obj.student_details())

__init__() Function

All classes have a function called __init__(), which is always executed when the class is being initiated.
__init__() function is used to assign values to object properties, and other operations that are necessary to do when
the object is being created.

The __init__() function is called automatically every time the class is being used to create a new object.

Example
Create a class named Person, use the __init__() function to assign values for name and age:

class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age
p1 = Person("John", 36)
print(p1.name)
print(p1.age)

Normally in a program if more than one classes are defined each of their attributes and methods can be used in the
program by separately creating object instances to each classes and used. This is because, an attribute or a method
inside a class belongs to that class and it cannot be used or called inside another class. Consider the below program
that uses three classes:

classGrandFather:

 def House(self):

 print("Granpas House")

class Father:

 def car(self):

 print("Fathers Car")

class me:

 def bike():

 print("My Bike")

s=GrandFather()

s.House()

s.car()

s.bike()

The output prints only the string used in the print statement under the classGrandFather by calling the method
House() that belongs to this class. Others show error as below:

73

PROGRAMMING IN PYTHON

To print others it is mandate to create separate object for each class to avoid the error as in the below program:

classGrandFather:

 def House(self):

 print("Granpas House")

class Father:

 def car(self):

 print("Fathers Car")

class me:

 def bike(self):

 print("My Bike")

s=GrandFather()

c=Father()

v=me()

s.House()

c.car()

v.bike()

Now the output is

Inheritance
It is also possible to access all the classes, their attributes and methods by creating single object instance. This can be
done to make each classes to inherit each other. Let us see the below example program of Inheritance.

Inheritance

classGrandFather:

 def House(self):

 print("Granpas House")

74

PROGRAMMING IN PYTHON

class Father(GrandFather):

 def car(self):

 print("Fathers Car")

class me(Father):

 def bike(self):

 print("My Bike")

s=GrandFather()

s.House()

s.car()

s.bike()

The output is

Inheritance allows us to define a class that inherits all the methods and properties from another class.
Parent class is the class being inherited from, also called base class.
Child class is the class that inherits from another class, also called derived class

The self Parameter
The self parameter is a reference to the current instance of the class. It is used to access variables that belongs to

the class. It is not compulsary to be named as self, you can call it whatever you like, but it must be placed as the first
parameter of any function in the class.

Example
Use the words mysillyobject and abc instead of self:

class Person:
 def __init__(mysillyobject, name, age):
 mysillyobject.name = name
 mysillyobject.age = age

 def myfunc(abc):
 print("Hello my name is " + abc.name)
p1 = Person("John", 36)
p1.myfunc()

Modify Object Properties
You can modify properties on objects like this:

Example
Set the age of p1 to 40:

p1.age = 40

75

PROGRAMMING IN PYTHON

Delete Object Properties
You can delete properties on objects by using the del keyword:

Example
Delete the age property from the p1 object:

del p1.age

The pass Statement
class definitions cannot be empty, but if you for some reason have a class definition with no content, put in

the pass statement to avoid getting an error.

Example
class Person:
 pass

Polymorphism
When calling a function having input parameters, all parameters must be assigned with a value without leaving any
parameter. Otherwise, python shows error.

There are special situation where any one of the input parameters will be either filled with a value or can be ignored
passing value. Such function call is called polymorphism.

Example 1:
 def fnPoly1(a,b,c=0):

 return a+b+c

The above function can be called in anyone of the below ways:
Usage-1:
 print(fnPoly1(3,4,5))

Will output the result as:
 >>>12

Usage-2:
 print(fnPoly(3,4))

Will output the result as:
 >>7

Example 2:
 def fnFullName(firstName,lastName,surName=””):

 return firstName+” “+lastName+” “+surName

The above functions can be called in anyone of the below method:
Usage-1:
 print(fnFullName(“Mark Hamill”,”Anakin”)

Will output the result as:
 >>>Mark Hamill Anakin

Usage-2:
 Print(fnFullName(“Mark Hamill”,”Anakin”,”SkyWalker”)

Will output the result as:
 >>>Mark Hamill Anakin SkyWalker

76

PROGRAMMING IN PYTHON

Python Iterators
An iterator is an object that contains a countable number of values.
An iterator is an object that can be iterated upon, meaning that you can traverse through all the values.
Technically, in Python, an iterator is an object which implements the iterator protocol, which consist of the methods
__iter__() and __next__().

Iterator vs Iterable
Lists, tuples, dictionaries, and sets are all iterable objects. They are iterable containers which you can get an iterator
from.

All these objects have a iter() method which is used to get an iterator:

Example
Return an iterator from a tuple, and print each value:

mytuple = ("apple", "banana", "cherry")

myit = iter(mytuple)

print(next(myit))

print(next(myit))

print(next(myit))

Even strings are iterable objects, and can return an iterator:
Example
Strings are also iterable objects, containing a sequence of characters:

mystr = "banana"

myit = iter(mystr)

print(next(myit))

print(next(myit))

print(next(myit))

print(next(myit))

print(next(myit))

print(next(myit))

Looping Through an Iterator
We can also use a for loop to iterate through an iterable object:

Example
Iterate the values of a tuple:

mytuple = ("apple", "banana", "cherry")

for x in mytuple:

 print(x)

Example

Iterate the characters of a string:

mystr = "banana"

for x in mystr:

 print(x)

77

PROGRAMMING IN PYTHON

The for loop actually creates an iterator object and executes the next() method for each loop.

Create an Iterator
To create an object/class as an iterator you have to implement the methods __iter__() and __next__() to your
object.

As you have learned in the Python Classes/Objects chapter, all classes have a function called __init__(), which allows
you to do some initializing when the object is being created.

The __iter__() method acts similar, you can do operations (initializing etc.), but must always return the iterator
object itself.

The __next__() method also allows you to do operations, and must return the next item in the sequence.

Example
Create an iterator that returns numbers, starting with 1, and each sequence will increase by one (returning 1,2,3,4,5
etc.):

class MyNumbers:

 def __iter__(self):

 self.a = 1

 return self

 def __next__(self):

 x = self.a

 self.a += 1

 return x

myclass = MyNumbers()

myiter = iter(myclass)

print(next(myiter))

print(next(myiter))

print(next(myiter))

print(next(myiter))

print(next(myiter))

stopIteration

The example above would continue forever if you had enough next() statements, or if it was used in a for loop.
To prevent the iteration to go on forever, we can use the stopIteration statement.

In the __next__() method, we can add a terminating condition to raise an error if the iteration is done a specified
number of times:

Example
Stop after 20 iterations:

class MyNumbers:

 def __iter__(self):

 self.a = 1

 return self

 def __next__(self):

 if self.a <= 20:

 x = self.a

 self.a += 1

78

PROGRAMMING IN PYTHON

 return x

 else:

 raise stopIteration

myclass = MyNumbers()

myiter = iter(myclass)

for x in myiter:

 print(x)

Python Scope
A variable is only available from inside the region it is created. This is called scope.

Local Scope
A variable created inside a function belongs to the local scope of that function, and can only be used inside that
function.

Example
A variable created inside a function is available inside that function:

def myfunc():

 x = 300

 print(x)

myfunc()

Function Inside Function
As explained in the example above, the variable x is not available outside the function, but it is available for any
function inside the function:

Example
The local variable can be accessed from a function within the function:

def myfunc():

 x = 300

 def myinnerfunc():

 print(x)

 myinnerfunc()

myfunc()

Global Scope
A variable created in the main body of the Python code is a global variable and belongs to the global scope.

Global variables are available from within any scope, global and local.

Example
A variable created outside of a function is global and can be used by anyone:

x = 300

def myfunc():

 print(x)

myfunc()

print(x)

79

PROGRAMMING IN PYTHON

Naming Variables
If you operate with the same variable name inside and outside of a function, Python will treat them as two separate
variables, one available in the global scope (outside the function) and one available in the local scope (inside the
function):

Example
The function will print the local x, and then the code will print the global x:

x = 300

def myfunc():

 x = 200

 print(x)

myfunc()

print(x)

Global Keyword
If you need to create a global variable, but are stuck in the local scope, you can use the global keyword.
The global keyword makes the variable global.

Example
If you use the global keyword, the variable belongs to the global scope:

def myfunc():

 global x

 x = 300

myfunc()

print(x)

Also, use the global keyword if you want to make a change to a global variable inside a function.

Example
To change the value of a global variable inside a function, refer to the variable by using the global keyword:

x = 300

def myfunc():

 global x

 x = 200

myfunc()

print(x)

Python Modules
A module is an object like a code library.
A file containing a set of functions you want to include in your application.

Create a Module
Save the code in a file with the file extension .py:

Example
Save this code in a file named mymodule.py

def greeting(name):

 print("Hello, " + name)

Use a Module
Now we can use the module we just created, by using the import statement:

80

PROGRAMMING IN PYTHON

Example
Import the module named mymodule, and call the greeting function:

import mymodule

mymodule.greeting("Ben Kenobi")

Note: When using a function from a module, use the syntax:

module_name.function_name.

Variables in Module
The module can contain functions, and variables of all types (arrays, dictionaries, objects etc.):

Example
Save this code in the file mymodule.py

person1 = {

 "name": "John",

 "age": 36,

 "country": "Norway"

}

Example
Import the module named mymodule, and access the person1 dictionary:

import mymodule

a = mymodule.person1["age"]

print(a)

Naming a Module
You can name the module file whatever you like, but it must have the file extension .py

Re-naming a Module
You can create an alias when you import a module, by using the as keyword:

Example
Create an alias for mymodule called mx:

import mymodule as mx

a = mx.person1["age"]

print(a)

Built-in Modules
There are several built-in modules in Python, which you can import whenever you like.

Example
Import and use the platform module:

import platform

x = platform.system()

print(x)

Using the dir() Function
There is a built-in function to list all the function names (or variable names) in a module. The dir() function:

Example
List all the defined names belonging to the platform module:

import platform

x = dir(platform)

81

PROGRAMMING IN PYTHON

print(x)

Note: The dir() function can be used on all modules, also the ones you create yourself.

Import From Module
You can choose to import only parts from a module, by using the from keyword.

Example
The module named mymodule has one function and one dictionary:

def greeting(name):

 print("Hello, " + name)

person1 =

{

 "name": "John",

 "age": 36,

 "country": "Norway"

}

Example
Import only the person1 dictionary from the module:

from mymodule import person1

print (person1["age"])

Note: When importing using the from keyword, do not use the module name when referring to elements in the
module.

Example:

person1["age"], not mymodule.person1["age"]

Python Datetime

Python Dates
A date in Python is not a data type of its own, but we can import a module named datetime to work with dates as
date objects.

Example
Import the datetime module and display the current date:

import datetime

x = datetime.datetime.now()

print(x)

Date Output
When we execute the code from the example above the result will be:

2022-11-21 22:43:37.111041

The date contains year, month, day, hour, minute, second, and microsecond.
The datetime module has many methods to return information about the date object.
Here are a few examples, you will learn more about them later in this chapter:

Example
Return the year and name of weekday:

82

PROGRAMMING IN PYTHON

import datetime

x = datetime.datetime.now()

print(x.year)

print(x.strftime("%A"))

Creating Date Objects
To create a date, we can use the datetime() class (constructor) of the datetime module.
The datetime() class requires three parameters to create a date: year, month, day.

Example
Create a date object:

import datetime

x = datetime.datetime(2020, 5, 17)

print(x)

The datetime() class also takes parameters for time and timezone (hour, minute, second, microsecond, tzone), but
they are optional, and has a default value of 0, (None for timezone).

The strftime() Method
The datetime object has a method for formatting date objects into readable strings.
The method is called strftime(), and takes one parameter, format, to specify the format of the returned string:

Example
Display the name of the month:

import datetime

x = datetime.datetime(2018, 6, 1)

print(x.strftime("%B"))

A reference of all the legal format codes:

83

PROGRAMMING IN PYTHON

Handling files
Creating a file
In python, if a file is opened in output mode (write, append), the file will be created if does not exist.

Opening a file
To perform any input or output operation, the file must be opened first. To open a file python provides Open()
command. The usage of Open() command is described below:
General Format:
 Open(<filename>,<mode>)

Filename: Name of the file. If the filename is given along with the pathname, the file will be opened from the
specified path. If path is not specified the file will be opened from the default folder from where the python
program runs and if it does not exist, python will throw error.

Mode: Tells the program to open the specific file either in read, write or append etc. modes. Python provides
a list of modes as below:
 w- Write mode. If the specific file exists in the specific path, it will be opened in output mode and it
will clear its previous contents and writes the content newly.

 r- Read mode. It is used when a file is opened for reading its contents.
a- Append mode. It used to add contents to the file. The difference between Append and Write mode

is that when a file is opened in a Write mode, it will clear previously stored contents but Append
will add the newly written contents at the end of previously stored contents.

Example
 f1=open(“E:\Pythonprj\file1.txt”,”w”)

This line will open a file named file1.txt on the specified path E:\Pythonprj\file1.txt and it is ready to write contents
in it as it is opened in “w” mode. This mode will open the specified file if exists in the path. If it does not exist, it will
be created. Thus open command will open/create a file.

Writing contents to the file
Writing contents to the file can be done in many methods.The second line of the program will be written in the file
aster opening/creating the file.
 f1=open(“E:\Pythonprj\file1.txt”,”w”)

 f1.write("This is sample line1")

A write statement can write only one line at a time. To repeatedly write multiple lines to the file, write command
must be executed repeatedly with different contents. This can be done using either For or While loop.

The below program creates a file in write mode:
Example:
Program1:

Opening a file in Write mode

f1=open("E:\pythonprj\File1.txt","w")

f1.write("This is sample line1")

f1.close()

Program2:

Opening a file in Write mode

f1=open("E:\pythonprj\File1.txt","w")

f1.write("This is sample lineA")

f1.write("This is sample lineB")

f1.close()

84

PROGRAMMING IN PYTHON

The first program in the above example creates a file named as File1.txt in the specified path E:\pythonprj and writes
the line “This is sample line 1”. If we observe the second program, the same file is opened in Write mode same as in
program1 and it writes 2 lines “This is sample line A” and “This is sample line B” in it by deleting previously written
line.

If observed the below program, the two new lines are written as a single line.

Opening a file in Write mode

f1=open("E:\pythonprj\File1.txt","w")

f1.write("This is sample line1")

f1.write("This is sample line2")

f1.close()

To write these lines as separate line, add a “\n” at the beginning/end as shown below:
Opening a file in Write mode

f1=open("E:\pythonprj\File1.txt","w")

f1.write("This is sample line1\n")

f1.write("This is sample line2\n")

f1.close()

Appending contents to the file
Writing contents to an existing file by opening it in “a” (append) mode will add the new lines in write statement, to
the bottom of the file.

Opening a file in Append Mode

f1=open("E:\pythonprj\File1.txt","a")

f1.write("\nThis is sample line3")

f1.write("\nThis is sample line4")

f1.close()

The above program will add the lines to the file that is opened in “a” mode. Unlike “w” (write) mode, opening this file
will not delete previous contents of the file but will add the new contents along with the old contents of the file. After
executing the above program, the file contains below lines:

This is sample line1

This is sample line2

This is sample line3

This is sample line4

Reading contents from file
Read operation can be done only in a file that exists physically in the specified path. Reading a file can be done using
either read() or readln() commands.

Example

f3=open("E:\pythonprj\File1.txt","r")

data=f3.readline()

print(data)

f3.close

The above example program reads the content of the file line by line. Here only one readline() statement is found and
it will read only one line (usually first line). If the readline() command is put within a loop, it reads successive lines
when executed repeatedly.

85

PROGRAMMING IN PYTHON

Example
try:

 f3=open("E:\pythonprj\File1.txt","r")

 print(f3.writable())

 print(f3.readable())

 print(f3.mode)

 data=f3.readline()

 data1=f3.readlines()

 print(type(data1))

 print(data1[0])

 f3.close()

except FileNotFoundError:

 print("File Not Found")

Rewriting contents to the file
Sample Program for Rewriting Contents (r+ mode)
#Rewriting/Updating contents of a file

#=====================================

f = open('D:\pythonprj\score.txt','w')

score=45

print(score)

f.write(str(score))

f.close()

f = open('D:\pythonprj\score.txt','r+')

PlayersScore = 1

oldscore = (f.read())

oldscore = int(oldscore)

score = oldscore + PlayersScore

print(score)

f.write(str(score))

f.close()

Closing a file

Example:
The below programs show how to open a file in different modes and how to read, write and to append contents
from/to a file.

The first program creates a file named as File1.txt in the specified path E:\pythonprj and writes the line “This is sample
line 1”. If we observe the second program, the same file is opened in Write mode same as in program1 and it writes 2
lines “This is sample line A” and “This is sample line B” in it by deleting previously written line. Also if observed, the
two new lines are written as a single line. To write these lines as separate line, add a “\n” at the end of the first line.
This is explained in Program-3.

A read / write statement can read / write only one line at a time. To repeatedly read / write multiple lines from / to
the file, these commands must be executed repeatedly. For this purpose, we can either use For or While loop.
Program-4 explains how to read contents from a file in different ways using read(), readline(), readlines() and to write
contents to a file in different ways using write(), writeline(),writelines() commands.
Program-5 explains how a file content can be read and rewritten as an update.

Program1:

86

PROGRAMMING IN PYTHON

Output1:

Program-2:

Output-2:

Program-3:

Output-3:

87

PROGRAMMING IN PYTHON

Program-4:

Opening a file in Write mode

f1=open("E:\pythonprj\File1.txt","w")

f1.write("This is sample line1")

f1.close()

Opening a file in Write mode

f1=open("E:\pythonprj\File1.txt","w")

f1.write("This is sample line1")

f1.write("This is sample line2")

f1.close()

Opening a file in Append Mode

f1=open("E:\pythonprj\File1.txt","a")

f1.write("\nThis is sample line5")

f1.write("\nThis is sample line6")

f1.close()

#====

f2=open("E:\pythonprj\File2.txt","w")

lst=["This is first line","This is Second Line","This is 3rd Line"]

for each_line in lst:

 f2.write(each_line)

 print(each_line)

f2.close

#===========

f3=open("E:\pythonprj\File1.txt","r")

data=f3.readline()

print(data)

f3.close

#========

try:

 f3=open("E:\pythonprj\File1.txt","r")

 print(f3.writable())

 print(f3.readable())

 print(f3.mode)

 data=f3.readline()

 data1=f3.readlines()

 print(type(data1))

 print(data1[0])

 f3.close()

except FileNotFoundError:

 print("File Not Found")

88

PROGRAMMING IN PYTHON

Program-5:

Output-5:

Sample program for opening file in all modes
Opening a file in Write mode

f1=open("D:\pythonprj\File1.txt","w")

f1.write("\nThis is sample line1")

f1.write("\nThis is sample line2")

f1.close()

Opening a file in Append Mode

f1=open("D:\pythonprj\File1.txt","a")

f1.write("\nThis is sample line3")

f1.write("\nThis is sample line4")

f1.close()

Opening a file in Read Mode

f3=open("D:\pythonprj\File1.txt","r")

for i in range(0,5):

 data=f3.readline()

 print(data)

f3.close

Opening a file in Write mode

f1=open("D:\pythonprj\File1.txt","w")

f1.write("This is sample line1")

f1.write("This is sample line2")

89

PROGRAMMING IN PYTHON

f1.close()

Opening a file in Append Mode

f1=open("D:\pythonprj\File1.txt","a")

f1.write("This is sample line3")

f1.write("This is sample line4")

f1.close()

Opening a file in Read Mode

f3=open("D:\pythonprj\File1.txt","r")

for i in range(0,5):

 data=f3.readline()

 print(data)

f3.close

Opening a file in Read Mode

f3=open("D:\pythonprj\File1.txt","r")

data=f3.readline()

print(data)

f3.close

Opening a file in Write mode

f1=open("D:\pythonprj\File1.txt","w")

f1.writelines("This is sample line1")

f1.writelines("This is sample line2")

f1.writelines("This is sample line3")

f1.writelines("This is sample line4")

f1.close()

Opening a file in Read Mode

f3=open("D:\pythonprj\File1.txt","r")

data=f3.readlines()

print(data)

f3.close

#ReadLine File

f2=open("D:\pythonprj\File1.txt","w")

lst=["This is first line","This is Second Line","This is 3rd Line"]

for each_line in lst:

 f2.write(each_line)

 print(each_line)

print(type(lst))

print(f2.mode)

f2.close

Reading Contents Of CSV (Comma Seperated) Excel File Contents:

import csv

with open("book1.csv", 'r') as csvfile:

 rows = csv.reader(csvfile)

90

PROGRAMMING IN PYTHON

 for row in rows:

 print(row)

Reading EXCEL File
import xlrd

location = "book1.xlsx"

wb = xlrd.open_workbook(location)

sheet = wb.sheet_by_index(0)

print(sheet.cell_value(0, 0)

Python with databases.
Using python we can develop database application. To develop a database application through any language, the
below steps are to be followed:

 Create Connectivity between database and the language.

 Open connection
o Create database if does not exist.
o Open database if exists.

 Create table if does not exist in the opened database.
 Add new rows to the table (adding records),
 Update existing row(s) (modifying existing row content)
 Delete selected row(s)

o Close database

 Close Connection.
Most of the language provides connectivity solution in such a way that, a database canbe opened while establishing
a connection.

Python Database Connectivity
Python also allows us to connect with any database and to work with that. Python has many modules to write programs
for various functions using its packages and classes, To work with databases the the class connect inside the connector
is used. For example, to work with MySQL database, python provides mysql.connector package. The class
mysql.connector.connect allows python to establish a connection to mySql database. This class has the below
parameters:

host=<Database Server Name>
user=<User name>
password=<Password>
database=<Database name>

Python with MySQL
Create MySql database Connection
Using connect() method of mysql.connector class, we can create a connection to a MySql database by specifying the
attributes for connect() method.
The general format is:

<Object Name>=mysql.connector.connect

 (
 host=”<Server Name>”,
 user=”<User Name>”,
 password=”<Password>”

91

PROGRAMMING IN PYTHON

Test MySQL Connectio
The below program connects to a database named trade that is available in mysql database server in the localhost:

import mysql.connector

con=mysql.connector.connect(host='localhost',user='root',password='',database='trade')

if con:

 print('connected')

else:

 print('not connected')

Username and password are of the MySQL database:

Afer establishing / creating the connection to the database, we can start querying the database using SQL
statements.

Database Creation
To create a database, table, adding rows, updating rows, deleting and reading rows from a table can be done with SQL
Statements, There are separate SQL statements are available for each action. Here, as part of the python tutorial, we
use the appropriate SQL statements for each action. Though it will be easy to understand, it is important to undergo
detail study about the SQL that is available as a separate course.

Example
The below code segment is used to create a database named "mydb"

import mysql.connector

con = mysql.connector.connect

(

 host="localhost",

 user="<username>",

 password="<password>"

)

cur = con.cursor()

cur.execute("CREATE DATABASE <database Name>")

Executing the above program segment with no errors will create a database in the name mentioned as <database

Name> successfully.

Check if a Database Exists
You can check if a database exist by listing all databases in your system by using the "SHOW DATABASES" statement:

Example
Return a list of your system's databases:

import mysql.connector

con = mysql.connector.connect

(

 host="localhost",

 user="<user name>",

 password="<password>"

)

cur = con.cursor()

92

PROGRAMMING IN PYTHON

cur.execute("SHOW DATABASES")

for dbName in cur:

 print(dbName)

Or the database can be accessed when making the connection:
Example
Try connecting to the database "dB":

import mysql.connector

con = mysql.connector.connect

(

 host="localhost",

 user="<username>",

 password="<password>",

 database="dB"

)

If the database does not exist, you will get an error.

Create a Table
To create a table in MySQL, use the "CREATE TABLE" statement.
Make sure you define the name of the database when you create the connection

Example
Create a table named "Employees":

import mysql.connector

con = mysql.connector.connect

(

 host="localhost",

 user="<username>",

 password="<password>",

 database="dB"

)

cur = con.cursor()

cur.execute("CREATE TABLE Employees (Emp_No VARCHAR(10), Basic Float)")

If the above code is executed with no errors, a new table named “Employees” is successfully created.

Check if Table Exists

To check if a table exists, list all the tables in a database with the "SHOW TABLES" statement:
Example

import mysql.connector

con = mysql.connector.connect

(

 host="localhost",

 user="<username>",

 password="<password>",

 database="dB"

)

93

PROGRAMMING IN PYTHON

cur = con.cursor()

cur.execute("SHOW TABLES")

for tblName in curr:

 print(tblName)

Return a list of tables in a database:

Insert a row in a table
To fill a table in MySQL, use the "INSERT INTO" statement.

import mysql.connector

con=mysql.connector.connect(host='localhost',user='root',password='',database='test')

cur = con.cursor()

sql = "INSERT INTO Employees (Emp_No, Basic) VALUES (%s, %s)con"

val = ("Mr. John Williams", "23000")

cur.execute(sql, val)

con.commit()

print(cur.rowcount, " record(s) inserted.")

Important!: Notice the statement: db.commit(). It is required to make the changes, otherwise no changes are made
to the table.

Insert Multiple Rows
To insert multiple rows into a table, use the executemany() method.
The second parameter of the executemany() method is a list of tuples, containing the data you want to insert:

Example

import mysql.connector

dbCon = mysql.connector.connect

(

 host="localhost",

 user="root",

 password="",

 database="test"

)

cur = dbCon.cursor()

sql = "INSERT INTO Employees (Emp_No, Basic) VALUES (%s, %s)"

val = [

 ('Diana Palmer', '5500'),

 ('Lamanda Luaga', '10400'),

 ('Coranda', '9500'),

 ('Col.Worobu', '7200'),

 ('Rex King', '4500'),

 ('Mozz', '5000'),

 ('Guran', '3400'),

 ('Tagama', '5800'),

 ('Dave Palmer', '10000')

]

cur.executemany(sql, val)

dbCon.commit()

print(cur.rowcount, " rows (s) where inserted.")

94

PROGRAMMING IN PYTHON

Get Inserted ID
You can get the id of the row you just inserted by asking the cursor object.
Note: If you insert more than one row, the id of the last inserted row is returned.

Example
Insert one row, and return the ID:

import mysql.connector

dbCon = mysql.connector.connect

(

 host="localhost",

 user="root",

 password="",

 database="test"

)

cur = dbCon.cursor()

sql = "INSERT INTO Employees (Emp_No, Basic) VALUES (%s, %s)"

val = ("Tom Tom", "3300")

cur.execute(sql, val)

dbCon.commit()

print("1 record inserted, ID:", cur.lastrowid)

Select From a Table
Using the "SELECT" statement, table rows can be Selected / Read:

Example
Select all records from the "Employees" table, and display the result:

import mysql.connector

dbCon = mysql.connector.connect

(

 host="localhost",

 user="root",

 password="",

 database="test"

)

cur = dbCon.cursor()

cur.execute("SELECT * FROM Employees")

rs = cur.fetchall()

for rows in rs:

 print(rows)

Note: We use the fetchall() method, which fetches all rows from the last executed statement.

Selecting Columns
To select only some of the columns in a table, use the "SELECT" statement followed by the column name(s):

Example

95

PROGRAMMING IN PYTHON

Select only the name and address columns:

import mysql.connector

dbCon = mysql.connector.connect

(

 host="localhost",

 user="root",

 password="",

 database="test"

)

cur = dbCon.cursor()

cur.execute("SELECT emp_No FROM Employees")

rs = cur.fetchall()

for rpw in rs:

 print(rs)

fetchone() Method
If you are only interested in one row, you can use the fetchone() method.
Example
Fetch single row will return the first row of the result:

import mysql.connector

dbCon = mysql.connector.connect

(

 host="localhost",

 user="root",

 password="",

 database="test"

)

cur = dbCon.cursor()

cur.execute("SELECT * FROM Employees")

rs = cur.fetchone()

print(rs)

Select With a Filter
When selecting records from a table, you can filter the selection by using the "WHERE" statement:

Example
Select record(s) where Basic is "3400":

import mysql.connector

dbCon = mysql.connector.connect

(

 host="localhost",

 user="yourusername",

 password="yourpassword",

 database="test"

)

cur = dbCon.cursor()

sql = "SELECT * FROM Employees WHERE Basic ='3400'"

cur.execute(sql)

rs = cur.fetchall()

for row in rs:

 print(row)

96

PROGRAMMING IN PYTHON

Wildcard Characters
To select the rows of columns that starts, includes, or ends with a given letter or phrase, the wildcard characters % *
are used:

Example
Select records where the contains the word "ABC":

import mysql.connector

dbCon = mysql.connector.connect

(

 host="localhost",

 user="root",

 password="",

 database="test1"

)

cur = dbCon.cursor()

sql = "SELECT * FROM Employees WHERE Emp_No LIKE '%ABC%'"

cur.execute(sql)

rs = cur.fetchall()

for row in rs:

 print(row)

Prevent SQL Injection
When query values are provided by the user, you should escape the values. This is to prevent SQL injections, which is
a common web hacking technique to destroy or misuse your database. The mysql.connector module has methods to
escape query values:

Example
Escape query values by using the placholder %s method:

import mysql.connector

mydb = mysql.connector.connect

(

 host="localhost",

 user="yourusername",

 password="yourpassword",

 database="mydatabase"

)

mycursor = mydb.cursor()

sql = "SELECT * FROM customers WHERE address = %s"

adr = ("Yellow Garden 2",)

mycursor.execute(sql, adr)

myresult = mycursor.fetchall()

for x in myresult:

 print(x)

97

PROGRAMMING IN PYTHON

Delete row
You can delete rows from an existing table by using the "DELETE FROM" statement:

Example
Delete any record where the address is "Mountain 21":

import mysql.connector

con=mysql.connector.connect(host='localhost',user='root',password='',database='test')

if con:

 id=input("Enter Sales ID to delete: ")

 res=con.cursor()

 sql="delete from sales where sale_id=%s"

 print(sql)

 user=(id,)

 res.execute(sql,user)

 con.commit()

 print(mycursor.rowcount, "record(s) deleted")

else:

 print("Cannot connect to database")

Note WHERE clause in the DELETE - The WHERE clause specifies which record(s) that should be deleted. If you omit
the WHERE clause, all records will be deleted!

CRUD Program
CRUD is the abbreviated term for Create, Read, Update and Delete. A program written to create a database content,
read, update and delete it is called CRUD program.

There are special database language commands are available in all the databases for data manipulations such as
add/insert, update/modify, delete / remove a data row to a data table in the database in connection. The special data
manipulation language is called SQL (Structured Query Language).

To execute any SQL command to manipulate a data table of a database, the steps to be carried out in an order listed
below:

1. Establish database connection successfully.
2. Create an instance for a cursor to the connection.
3. Execute the SQL command by calling execute method of the connection cursor.
4. If any read and write operation (Insert, Update or Delete SQL) was performed, make the changes permenant

to the data table using the method commit()

Creating a new data row
An INSERT SQL will be executed to insert a data row to a table. Below python code segment inserts a data row:

import mysql.connector

con=mysql.connector.connect(host='localhost',user='root',password='',database='trade')

if con:

 print('connected')

else:

 print('not connected')

res=con.cursor()

sql="insert into smpl (id,name,age) values (%s, %s, %s)"

98

PROGRAMMING IN PYTHON

print(sql)

user=(id,name,age)

res.execute(sql,user)

con.commit()

print("Inserted")

Updating existing data row
An UPDATE SQL will be executed to modify an existing data row in a table. Below python code segment inserts a data
row:

import mysql.connector

con=mysql.connector.connect(host='localhost',user='root',password='',database='trade')

if con:

 print('connected')

else:

 print('not connected')

res=con.cursor()

sql="update smpl set id=%s,name=%s,age=%s where id=%s"

print(sql)

user=(id,name,age,id1)

res.execute(sql,user)

con.commit()

print("Updated")

Deleting an existing row
A DELETE SQL will be executed to remove an existing data row in a table. Below python code segment inserts a data
row:

import mysql.connector

con=mysql.connector.connect(host='localhost',user='root',password='',database='trade')

if con:

 print('connected')

else:

 print('not connected')

res=con.cursor()

sql="delete from smpl where id=%s"

print(sql)

user=(id,)

res.execute(sql,user)

con.commit()

print("Record id is deleted")

Reading a data row
To read a data row from a data table of a database, SELECT SQL will be executed as in the below code segment:

from tabulate import tabulate

import mysql.connector

con=mysql.connector.connect(host='localhost',user='root',password='',database='trade')

if con:

99

PROGRAMMING IN PYTHON

 print('connected')

else:

 print('not connected')

res=con.cursor()

sql="SELECT * FROM SMPL"

res.execute(sql)

result=res.fetchall()

print(tabulate(result,headers=["ID","NAME","AGE"]))

The module tabulate is imported to display the data rows in tabular form.

A sample python program to perform CRUD operation on a database can explain more in detail about working with a
database. The below sample program that provides a menu and allows user to choose an option to carry out one of
the CRUD operation on a mysql database named trade

In below program, code for each action (INSERT, READ (SELECT), UPDATE and DELETE are written as separate functions.
And a Menu is provided to select an option to perform any one of the action.

from tabulate import tabulate

import mysql.connector

con=mysql.connector.connect(host='localhost',user='root',password='',database='trade')

if con:

 print('connected')

else:

 print('not connected')

def insert(id,name,age): # Creating database rows by adding information to a specific

 table of the database connected.

 res=con.cursor()

 sql="insert into smpl (id,name,age) values (%s, %s, %s)"

 print(sql)

 user=(id,name,age)

 res.execute(sql,user)

 con.commit()

 print("Inserted")

def update(id,name,age,id1): # Updating database rows by adding information to a specific

 table of the database connected.

 res=con.cursor()

 sql="update smpl set id=%s,name=%s,age=%s where id=%s"

 print(sql)

 user=(id,name,age,id1)

 res.execute(sql,user)

 con.commit()

 print("Updated")

def select(): # Reading database rows by adding information to a

 specific table of the database connected.

 res=con.cursor()

 sql="SELECT * FROM SMPL"

 res.execute(sql)

 result=res.fetchall()

 print(tabulate(result,headers=["ID","NAME","AGE"]))

100

PROGRAMMING IN PYTHON

def delete(id): # Deleting database rows by adding information to a

 specific table of the database connected.

 res=con.cursor()

 sql="delete from smpl where id=%s"

 print(sql)

 user=(id,)

 res.execute(sql,user)

 con.commit()

 print("Record id is deleted")

while True:

 print("1.INSERT")

 print("2.UPDATE")

 print("3.SELECT")

 print("4.DELETE")

 print("5.QUIT")

 choice=int(input("Enter Choice: "))

 if choice==1:

 id=input("Enter ID: ")

 name=input("Enter Name: ")

 age=input("Enter Age: ")

 insert(id,name,age)

 elif choice==2:

 id=input("Enter ID: ")

 name=input("Enter Name: ")

 age=input("Enter Age: ")

 id1=input("Enter Which ID: ")

 update(id,name,age,id1)

 elif choice==3:

 print("---------------------------------------")

 select()

 print("---------------------------------------")

 elif choice==4:

 id=input("Enter ID: ")

 delete(id)

 elif choice==5:

 print("Process Ends")

 quit()

 else:

 print("Invalid Selection. Try Again")

101

PROGRAMMING IN PYTHON

	Introduction to Computer Languages
	Computer Architecture
	Programming Fundamentals
	Compiler and Interpreters
	Compilation of a program

	Generations of Programming Languages
	Languages for Text Mode Operating Systems
	Languages with DBMS concept
	Languages with GUI
	RDBMS

	Introduction to Python
	Features of Python
	Python Compiler Installation

	Core Python Language
	Getting Started

	Python Comment Lines
	Creating a Comment
	Multi Line Comments

	Python Variables
	Variable Names
	Naming Variable with multiple words
	Camel Case
	Pascal Case
	Snake Case

	Python Data Types
	Built-in Data Types

	Python Operators
	Bitwise Operators
	Number System
	Binary Number System
	Binary Truth Tables for AND,OR and XOR operations

	Octal Number System
	Hexadecimal Number System

	Python Comment Lines (1)
	Creating a Comment
	Multi Line Comments

	Commands
	Input Commands
	Type Casting

	Output Commands
	Outputting Variables
	Assignment Expressions
	Program to test Python Operators
	Arithmetic Expressions
	Hierarchy of operation

	Control Statements
	Unconditional Control Commands
	Break

	Conditional Control Commands
	If-elif-else:
	Program to find biggest among three numbers

	Repetitive Control Commands
	For loop
	Sample program using for in loop
	Program to print Prime numbers within a given N range

	While loop

	Python (Data) Collections
	More Data types
	Setting the Data Type
	Setting the Specific Data Type

	Arrays
	Access the Elements of an Array
	Modifying an array element
	Length of an Array
	Looping Array Elements
	Adding Array Elements
	Removing Array Elements
	Sample program using for loop and Array

	Lists
	Create a List
	List Items
	Ordered List
	Changeable List
	Duplicates
	type()
	list() Constructor
	Program to test list
	List Methods

	Tuples
	Tuple Items
	Ordered
	Unchangeable
	Allow Duplicates
	Tuple Length
	Create Tuple With a single Item
	Tuple Items - Data Types
	type()

	Array Methods
	The tuple() Constructor
	Access Tuple Items

	Update Tuples
	Change Tuple Values
	Add Items
	Remove Items

	Unpack Tuples
	Using Asterisk(*)
	Loop Tuples
	Loop Through the Index Numbers
	Using a While Loop

	Join Tuples
	Multiply Tuples
	Tuple Methods
	Sample program with Tuples exercises

	Dictionaries
	Ordered / Unordered
	Changeable
	Duplicates Not Allowed
	Dictionary Length
	Items Data Types
	type()
	Accessing Items
	Get Keys
	Get Values
	Get Items

	Check if Key Exists
	Change Values
	Update Dictionary
	Adding Items
	Removing Items
	Loop through a Dictionary
	Copy a Dictionary
	Nested Dictionaries
	Dictionary Methods
	Sample Program using Dictionary Methods

	Sets
	Create a Set
	Set Items
	Unordered
	Unchangeable
	Duplicates Not Allowed
	Length of a Set
	Data Types of Set Items
	type()
	set() Constructor
	Access Items
	Change Items
	Add Items
	Add Any Iterable
	Remove Item
	Loop Items
	Join Two Sets
	Keeping Only the Duplicate Items
	Keep All, except the Duplicates
	Set Methods

	Python Strings
	Strings
	Assign String to a Variable
	Multiline Strings
	Strings are Arrays
	Looping Through a String
	String Length
	Check String
	Check if NOT
	Slicing
	Slice From the Start
	Slice To the End
	Negative Indexing
	Modify Strings
	Upper Case
	Lower Case
	Remove Whitespace
	Replace String
	Split String

	String Methods
	String Concatenation

	Format - Strings
	String Format

	Python String Formatting
	String format()
	Multiple Values
	Index Numbers
	Named Indexes
	Escape Character

	String Methods (1)

	Functions
	Program to find ncr=n! r! / (n-r)!
	Lambda Function
	Purpose of Lambda Functions
	Global Variables
	The global Keyword

	Introduction to Object Oriented Programming:
	Classes
	Objects
	Attributes
	Methods
	Create a Class
	__init__() Function
	Inheritance
	The self Parameter
	Modify Object Properties
	Delete Object Properties
	The pass Statement
	Polymorphism
	Python Iterators
	Iterator vs Iterable
	Looping Through an Iterator
	Create an Iterator
	Python Scope
	Local Scope
	Function Inside Function
	Global Scope

	Naming Variables
	Global Keyword

	Python Modules
	Create a Module
	Use a Module
	Variables in Module
	Naming a Module
	Re-naming a Module
	Built-in Modules
	Using the dir() Function
	Import From Module

	Python Datetime
	Python Dates
	Date Output
	Creating Date Objects
	The strftime() Method

	Handling files
	Creating a file
	Opening a file
	Writing contents to the file
	Appending contents to the file
	Reading contents from file
	Rewriting contents to the file
	Sample Program for Rewriting Contents (r+ mode)

	Closing a file
	Sample program for opening file in all modes

	Reading Contents Of CSV (Comma Seperated) Excel File Contents:
	Reading EXCEL File
	Python with databases.

	Python Database Connectivity
	Python with MySQL
	Create MySql database Connection
	Test MySQL Connectio
	Check if a Database Exists

	Create a Table
	Check if Table Exists

	Insert a row in a table
	Insert Multiple Rows
	Get Inserted ID
	Select From a Table
	Selecting Columns
	fetchone() Method
	Select With a Filter
	Wildcard Characters
	Prevent SQL Injection
	Delete row

	CRUD Program
	Creating a new data row
	Updating existing data row
	Deleting an existing row
	Reading a data row

